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A Functional Regression approach to Facial
Landmark Tracking

Enrique Sánchez-Lozano, Georgios Tzimiropoulos*, Brais Martinez*,
Fernando De la Torre and Michel Valstar

Abstract—Linear regression is a fundamental building block in many face detection and tracking algorithms, typically used to predict
shape displacements from image features through a linear mapping. This paper presents a Functional Regression solution to the least
squares problem, which we coin Continuous Regression, resulting in the first real-time incremental face tracker. Contrary to prior work
in Functional Regression, in which B-splines or Fourier series were used, we propose to approximate the input space by its first-order
Taylor expansion, yielding a closed-form solution for the continuous domain of displacements. We then extend the continuous least
squares problem to correlated variables, and demonstrate the generalisation of our approach. We incorporate Continuous Regression
into the cascaded regression framework, and show its computational benefits for both training and testing. We then present a fast
approach for incremental learning within Cascaded Continuous Regression, coined iCCR, and show that its complexity allows real-time
face tracking, being 20 times faster than the state of the art. To the best of our knowledge, this is the first incremental face tracker that
is shown to operate in real-time. We show that iCCR achieves state-of-the-art performance on the 300-VW dataset, the most recent,
large-scale benchmark for face tracking.

Index Terms—Continuous Regression, Face Tracking, Functional Regression, Functional Data Analysis.
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1 INTRODUCTION

L INEAR REGRESSION is a standard tool in many Com-
puter Vision problems, such as pose estimation [16],

and object tracking [48], and it is the foremost approach for
facial landmark detection, especially after the introduction
of the so-called Cascaded Regression method [11], [43], [46],
[52], [54]. The goal of facial landmark detection is to locate a
sparse set of facial landmarks in still images or videos. It is a
problem of wide interest to the Computer Vision community
because many higher level face analysis tasks, such as facial
expression recognition [15], and face recognition [59], are
critically affected by the performance of facial landmark
detection systems.

Arguably, the most popular method for facial landmark
detection is the Supervised Descent Method (SDM) [52], in
which a set of Linear Regressors are used in a cascade, each
approximating the average descent direction for a specific
input space. SDM generates samples by randomly perturb-
ing the training data, i.e., each regressor is learnt by min-
imising the least squares error on a training set of annotated
images and known displacements. Many extensions to SDM
have been proposed [2], [22], [38], [46], yet little attention has
been paid to the limitations of the sampling-based approach
to linear regression, inherent to all aforementioned methods.
More specifically, it has been shown that the sampling-
based approach is directly related to the following three
limitations:
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• The least squares formulation theoretically needs an
exponential number of samples with respect to the
dimensionality of the input vector in order to avoid
biased models.

• Training an SDM model is computationally expen-
sive as it requires the data to be sampled per cascade
level, with both memory and time needed increasing
dramatically with the number of perturbations.

• Incremental learning for SDM has been reported to
be extremely slow [2], [53]. This limits the capacity
of SDM and its extensions for learning on-line and in
real-time, which for an application such as face track-
ing is impractical and hence highly unsatisfactory.

In order to overcome the aforementioned limitations, in
this paper we propose Continuous Regression, a Functional
Regression solution to the Least-Squares problem, and show
its application to real-time face tracking. Contrary to SDM,
the proposed Continuous Regression solution only requires
the data to be sampled at the ground-truth landmarks, i.e.,
no sampling at perturbations is required. This way, one
can sample and store the ground-truth data only once, and
then train each cascade level, or even a new model under
a different configuration extremely quickly. While the SDM
can take hours to train, our proposed Continuous Regres-
sion can train different models in seconds, once the data
is extracted. Moreover, and contrary to existing cascaded
regression methods, our continuous formulation allows for
real-time incremental learning, which as we demonstrate is
crucial for attaining state-of-the-art tracking performance on
the most challenging subset of the 300-VW dataset [41].

Continuous Regression approaches the standard least
squares formulation from a continuous perspective where
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Fig. 1. Left: Difference between sampling-based regression and continuous regression. The continuous regression accounts for all the samples
within a neighbourhood, whereas sampling-based needs to sample the data from a given distribution. Right: Our new approach to Continuous
Regression can be seen as the inverse of a Monte Carlo sampling estimation. We will see that the probability density function defined by p(δs)
defines the volume within which samples are taken.

the target variable is treated as a continuum. Unlike existing
approaches to Functional Regression, which approximate
the input space by means of B-splines [26], Fourier Series
[33], or Radial Basis Functions [31], in this paper, we propose
a first-order Taylor expansion of the feature space. This way,
the input space becomes linear with respect to shape dis-
placements yielding a closed-form solution. We go beyond
prior work in Functional Regression, and study the case of
correlated variables which naturally arises within landmark
localisation and tracking. To this end, we introduce a “data
term”, tasked with correlating the different dimensions over
which the problem is solved.

We then extend Continuous Regression within the cas-
caded regression framework, and demonstrate that training
our method has notable computational benefits compared to
that of standard SDM, without sacrificing accuracy. Finally,
we devise an approach for incremental learning in the
continuous domain, and show that its complexity allows for
real-time tracking. To the best of our knowledge, our Incre-
mental Cascaded Continuous Regression method (iCCR), is
the first cascaded regression method that incorporates real-
time incremental learning capabilities. Crucially, we show
the importance of incremental learning in achieving state-
of-the-art results on the 300-VW dataset.

This manuscript re-formulates the Continuous Regres-
sion over uncorrelated variables, which has been presented
in [37], and further extends it to the domain of correlated
variables, presented in [39]. Building on [37], [39], we
present a complete formulation for the Continuous Regres-
sion problem, and then provide a geometric interpretation
and link to previous works. An overview of our work is
depicted in Fig. 1.

1.1 Contributions
Our main contributions are as follows:

• We propose a complete formulation for Continuous
Regression including a closed-form solution based
on a first-order Taylor expansion of the input space.
Notably, prior work in Functional Regression has
only considered approximating the input space with
pre-defined basis functions.

• We then go one step further in the classical Func-
tional Regression formulation and propose a novel
optimisation problem for Continuous Regression

which allows the target variable to be correlated. We
also analytically derive the solution to this problem.

• We incorporate Continuous Regression into the
Cascaded Regression framework, demonstrating its
computational benefits over SDM. We coin our
method Cascaded Continuous Regression (CCR).

• We derive the incremental learning updates for CCR,
coined iCCR. We show that iCCR is capable of real-
time incremental face tracking, being also an order of
magnitude less complex than previous works based
on incremental SDM.

• We evaluate iCCR on the 300VW data set [41] and
show the importance of incremental learning in
achieving state-of-the-art performance.

2 RELATED WORK

Our work applies and extends concepts from Functional
Regression to the problem of face tracking. This section pro-
vides a brief description of Functional Regression methods
and how they are related to our work. We follow with a
review of related face alignment and tracking methods.

2.1 Prior Work in Functional Regression Analysis

Functional Data Analysis. Functional Data Analysis (FDA)
[32] is a branch of statistics that aims to model realisations
of stochastic processes as continuous functions [32]. FDA
assumes that observations, and/or responses, are outcomes
of continuous processes [28], and attempts to parameterise
functions by means of basis functions, rather than as a set
of samples. Several basis functions have been proposed
to date for different FDA domains, such as Radial Basis
Functions [31], Fourier Series [33], or B-splines [26].

A typical use of Functional Data Analysis is in the field
of Linear Regression, called Functional Regression [57], in
which either the responses or the observed data, or both, are
modelled as continuous functions. Functional Regression on
longitudinal data can be seen as an extension of Multivariate
Polynomial Regression to complex time series. Typically,
basis functions are used to approximate the observed data,
although some elegant solutions have also been proposed
to model responses as well [28]. However, in practice it is
not computationally feasible to approximate image features
by means of Radial Basis Functions or Fourier Series. We
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propose to approximate the input features by their Taylor
expansion with respect to the variable of interest (variation
on shapes) to address this. To the best of our knowledge,
this is the first time that this approximation is applied in the
context of Functional Regression.

FDA in Computer Vision. To the best of our knowledge,
there are very few works that apply ideas from FDA to
Computer Vision problems, and none address the problem
of facial landmark localisation. The work that is perhaps
closest to ours (in some of its preliminary assumptions)
is PCA applied over continuous subspaces presented by
Levin and Shashua [21]. The main idea of [21] is to extend
the covariance matrix of the input data, necessary for the
computation of PCA, to all possible linear combinations
of the training samples. That is, given a set of training
examples (images) ai, i = 1...d, the covariance is defined
as Cov(W ) = 1

V

∫
a∈W aaT da, where W is the set of

convex combinations of training examples, and V is the
volume of the polytope defined by W . The inverse of the
volume outside the integral indicates that a uniform density
function when sampling the points a ∈ W is assumed.
In this work, we will set out how one can formulate the
Least-Squares problem for Continuous Regression using a
covariance matrix, providing a link between our work and
[21]. Our solution, however, does not necessarily need to be
formulated using a uniform distribution.

2.2 Prior Work on Face Tracking
Facial landmark tracking methods have often been adap-
tations of facial landmark detection methods. For example,
Active Shape Models [9], Active Appearance Models (AAM)
[11], [27], Constrained Local Models (CLM) [40], or the
Supervised Descent Method (SDM) [52] were all presented
as detection algorithms. It is thus natural to group facial
landmark tracking algorithms in the same way as detection
algorithms, i.e. into discriminative and generative methods.

On the generative side, AAMs have often been used for
tracking. Because model fitting relies on gradient descent,
it suffices to start the fitting from the previously tracked
shape1. AAMs have been particularly regarded as very reli-
able for person specific tracking, but not for generic tracking
(i.e., tracking faces unseen during training) [17]. Recently
[44], [47] showed however that an improved optimisation
procedure and the use of in-the-wild images for training can
lead to satisfactorily person independent AAM. Eliminating
the piecewise-affine representation and adopting a part-
based model led to the Gauss-Newton Deformable Part
Model (GN-DPM) [45] which is the state-of-the-art AAM.

Discriminative methods directly learn a mapping from
image features to shape displacements, effectively elim-
inating the need to minimise a reconstruction error. A
certain family of discriminative methods rely on training
local classifier-based models of appearance, with the local
responses being then constrained by a shape model [9], [13],
[40]. These algorithms are typically cast into the Constrained
Local Model (CLM) formulation [13], [25], [40].

One of the simplest tools for discriminative methods is
Linear Regression, which was firstly used to bypass the need

1. “Implementation tricks” can be found in [43], which provides a
very detailed account of how to optimise an AAM tracker

of an appearance model when fitting AAMs to images [11].
Herein, we refer to linear regression as a sampling-based
method, in which the training is performed by generating
random perturbations of the target variable (the shape dis-
placements). Despite its simplicity and its fast computation,
a single regressor has been shown to be a poor choice to
account for all input variance. In order to overcome this
limitation, boosted regression methods were proposed in
[12], [42] where a set of weak regressors are added to a
master model, resulting in stronger regressors [12], [24].
Furthermore, in order to reduce the input variance of each
of the weak regressors, [16] proposed the use of weakly
invariant features. The use of such features requires boosted
regression be split into different stages, in which a different
regressor has to be learnt for each feature extraction step.
This novel approach was firstly exploited for the task of
pose estimation [16] and then was successfully applied to
face alignment in [6], [7]. However, the most successful
form of Cascaded Regression is the Supervised Descent
Method (SDM) [52], which applies a sampling-based linear
regression for each cascade level, and in which each level
can be seen as an average descent direction for the full shape
displacement estimation. The use of SIFT [23] features, and
the direct estimation of the full shape variation, made the
SDM the state-of-the-art method for face alignment. Succes-
sive works have further shown impressive efficiency [19],
[34] and reliable performance [46], [55].

However, how to best exploit discriminative cascaded re-
gression for tracking and, in particular, how to efficiently in-
tegrate incremental learning, is still an open problem. More
importantly, SDM has not yet overcome one of the main
intrinsic limitations of sampling-based linear regression, to
wit, the generation of biased models. This is especially
important when it comes to tracking, since the initialisation
is given by the points of the previous frame, and therefore
there is no guarantee that the output of the model will
serve as a good initialisation point for the subsequent frame.
Eventually, this might cause the tracker to drift. Also, the
SDM is prone to fail for large out-of-plane head poses.
In order to overcome this limitation, recent methods have
proposed to pay special attention to the way the fitting
is initialised. In [54], a Global Supervised Descent Method
applies a partition to the shape space, in order to generate
a different cascaded regression model for each possible
domain of homogeneous descent directions.

Regarding evaluation and benchmarking, the only large-
scale face tracking benchmark that exists to date is the 300
Videos in the Wild (300-VW) challenge [41]. Two methods
were shown to clearly outperform all others. In [56], a
multi-view cascaded regression is used in which a different
model is trained for each different partition of the space of
poses. This approach, along with an accurate re-initialisation
system achieved the best results in the challenge. In [50], a
multi-stage regression approach is used, which guides the
initialisation process based on the localisation of a subset of
landmarks with a strong semantic meaning. The resulting
method achieved results very close to those of [56].

Finally, it is worth mentioning the advent of facial
landmark localisation using Deep Learning [5], [29], [51].
However, despite achieving impressive accuracy, these tech-
niques are far from being able to operate at real-time speed.
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3 LINEAR REGRESSION FOR FACE ALIGNMENT

This section reviews Cascaded Regression training using
Linear Regression, which is the learning problem Contin-
uous Regression builds upon. In the following, we will
represent a face image by I. A face shape s ∈ R2n is a vector
describing the location of the n landmarks considered. We
will represent vector shapes as s = (x1, . . . , xn, y1, . . . yn)T .
We also define x = f(I, s) ∈ Rd as the feature vector
representing shape s. An asterisk represents the ground
truth, e.g., s∗j is the ground truth shape for image j.

Cascaded Regression [6], [16], [52] is an iterative regres-
sion method in which the output of regression at level l
is used as input for level l + 1, and each level uses image
features depending on the current shape estimate. The most
widely used form of Cascaded Regression is the Supervised
Descent Method (SDM, [52]), which learns a cascade of
linear regressors on SIFT features.

Training SDM for face alignment requires a set of M
images {Ij}j=1...M and their corresponding K perturbed
shapes {s(0)j,k}j=1...M,k=1...K . When the fitting is carried out
from the output of a face detector, the different perturba-
tions, k = 1 . . .K , are generated by applying a random
perturbation to the bounding boxes, capturing the variance
of the face detector. When the fitting is initialised from the
fitting of the previous frame, as is the case of tracking, the
training perturbations are generated by applying a random
perturbation to the ground-truth points, ideally capturing
the variance of facial shapes between consecutive frames.
For each cascade level l (starting with l = 0), a regressor
is trained and applied to the training data, resulting in an
update to the input shapes. Therefore, a new set of training
shapes {s(l+1)

j,k }j=1...M,k=1...K is generated for level l + 1,
in which the updated perturbed shapes are on average
closer to their corresponding ground-truth. This way, the
input variance and the training error are decreased as one
descends through the cascade.

Mathematically speaking, if we are given a set of pertur-
bations δs(l)j,k = s

(l)
j,k − s∗j between the initial shapes for level

l, and their corresponding ground-truth, a regressor R(l) is
learnt that aims to minimise the least-squares error:

arg min
R

M∑
j=1

K∑
k=1

‖δs(l)j,k −Rf(Ij , s
∗
j + δs

(l)
j,k)‖22, (1)

where the bias term is implicitly included by append-
ing a 1 to the feature vector. If we store the features
xj,k = f(Ij , s

(l)
j,k) into matrix X(l), and the corresponding

displacements δs(l)j,k = s
(l)
j,k−s∗j into matrix Y(l), the solution

to Eq. (1) can be written in closed form:

R(l) = Y(l)(X(l))
T
(
X(l)(X(l))

T
)−1

. (2)

The regressor R(l) is then applied to each of the extracted
features xj,k, and a new training set is generated, in which
the training shapes are now given as:

s
(l+1)
j,k = s

(l)
j,k −R(l)f(Ij , s

(l)
j,k). (3)

The process is repeated until the average of the differences
δs

(l)
j,k = s

(l)
j,k − s∗j no longer decreases. Typically, the training

error is minimised after 4 or 5 cascade levels.

During testing, the initial shape s(0) is forwarded to the
first regressor R(0), to generate a new shape s(1), which
is subsequently forwarded to R(1). For each level l, a new
shape s(l+1) is generated by applying regressor R(l) to the
features extracted at s(l):

s(l+1) = s(l) −R(l)f(I, s(l)). (4)

Provided the prediction statistics of R(l) are known
for all cascade levels, the training of Cascaded Regression
can be done independently for each of them (par-SDM,
[2]). As pointed out in [2], for a sufficiently large and
general training set, we can first train SDM, following the
sequential algorithm shown above. After SDM training, we
can compute the mean µ(l) and covariance Σ(l) of the
differences that result from updating the training shapes:
δs

(l)
j,k = s

(l)
j,k − s∗j . Then, for each cascade level, we can

generate a set of random perturbations δs(l)j,k, drawn from a
Gaussian distributionN (µ(l),Σ(l)), and then compute each
R(l) using Eq. (2). This way, computing each regressor is
independent from the other levels, meaning that the training
can be performed in parallel.

As empirically shown by [2], such a model achieves
similar accuracy as a model trained in a sequential manner.
In addition, [2] showed that one can use these statistics to
train a par-SDM using a larger training set, without compro-
mising accuracy with respect to a sequentially trained SDM.
This implies that, for a sufficiently large original training set,
the computed statistics properly model the displacements
for each level. We will see that our Continuous Regression
can be straightforwardly introduced within the Cascaded
Regression framework, with the advantage that our pro-
posed method only needs the data to be sampled once,
whereas both the SDM and the par-SDM require a sampling
step for each Cascade Level.

4 CONTINUOUS REGRESSION

In this section we present a complete formulation and
solution for Continuous Regression, in which the shape dis-
placements are treated as continuous variables. We propose
the use of a first-order Taylor expansion approximation of
the feature space, which yields a closed-form solution in
the continuous domain for the Least-Squares problem. We
will see that our Taylor-based closed-form solution depends
only on the features extracted from the ground-truth shapes
and their derivatives. Contrary to existing approaches, our
Continuous Regression solution does not need to sample
over perturbations.

Let us consider the Linear Regression problem shown in
Eq. (1). The extension of the Least-Squares problem to the
continuous domain of shape displacements is defined as:

arg min
R

M∑
j=1

∫ a1

−a1
. . .

∫ a2n

−a2n
‖δs−Rf(Ij , s

∗
j + δs)‖22dδs, (5)

where2 the line element is defined as δs =
δx1 . . . δxn, δy1 . . . δyn, the limits are bounded, and
defined independently for each dimension. Without loss of
generality, we will assume that the limits are symmetric,

2. For the sake of clarity, we drop the dependence on the level
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and the displacement assumed for each of the points is
therefore unbiased.

Unlike previous works on Functional Regression, which
approximate the input feature space by B-splines or Fourier
series, we propose to approximate the input feature space
by its first-order Taylor expansion:

f(Ij , s
∗
j + δs) ≈ f(Ij , s

∗
j ) + J∗jδs, (6)

where J∗j =
∂f(Ij ,s)
∂s |(s=s∗j )

∈ Rd×2n, evaluated at s = s∗j ,
is the Jacobian of the feature representation of image Ij ,
with respect to shape coordinates s, at s∗j . To compute the
Jacobian of the image features (pixels) with respect to the x-
positions, we have to use some approximation, e.g. the Sobel
filter. We can also compute the empirical derivative of other
complex features, such as SIFT or HOG. Indeed, gradient-
based features, such as SIFT or HOG, are smoother than
pixels, and are therefore more feasible to be approximated
by a first-order Taylor expansion. Experiments will show
that the use of HOG features suffices to attain state of the
art performance, reinforcing the idea that a first-order Taylor
expansion is sufficient. Herein, we will define the empirical
derivative of the image features with respect to the x (or y)
coordinate, as follows:

∇fx =
∂f(I, x)

∂x
≈ f(I, x+ ∆x)− f(I, x−∆x)

2∆x
(7)

Then, the i-th column of the Jacobian J∗, for i = 1, . . . , n, is
given by∇fxi

, whereas the (i+n)-th column of the Jacobian
is given by ∇fyi . In practice, ∆x is set to the minimum
displacement, i.e., ∆x = 1. Given the approximation of
Eq. (6), the original problem can be expressed as:∫

‖δs−R
(
f(Ij , s

∗
j ) + J∗jδs

)
‖22dδs ≈ (8)∫ [

δsTAjδs + 2δsTbj + x∗j
TRTRx∗j

]
dδs, (9)

where Aj = (I−RJ∗j )
T (I−RJ∗j ) and bj = J∗j

TRTRx∗j −
Rx∗j . Given the independence between each dimension, the
linear term equals to zero for symmetric limits. For the
quadratic term, the solution stems from the fact that∫

δsTAjδsdδs =
∑
u,v

∫
Auvj δsuδsvdδs, (10)

where Auvj is the {u, v}-th entry of Aj , and su, sv refer
indistinctly to any pair of elements of s. We can see that∫

Auvj δsuδsvdδs =

{
Auuj

a2u
3

∏
k 2ak if u = v

0 otherwise
(11)

Let V =
∏
k 2ak, and let Σ ∈ R2n be a diagonal

matrix the entries of which are defined by a2u
3 . We can see

that
∫
δsTAjδsdδs = V

∑
uA

uu
j

a2u
3 . We can further observe

that
∑
uA

uu
j

a2u
3 = Tr(AjΣ). Similarly, we can see that∫

x∗j
TRTRx∗jdδs = x∗j

TRTRx∗jV . Then, the solution to
Eq. (9) is given by:

Tr(AjΣ)V + x∗j
TRTRx∗jV. (12)

The minimisation of Eq. (13) w.r.t. R has a closed-form
as follows:

R = Σ

 M∑
j=1

J∗j
T

 M∑
j=1

x∗jx
∗
j
T + J∗jΣJ∗j

T

−1 . (13)

The solution shown in Eq. (13) only accounts for the
ground-truth features and their corresponding Jacobians.
We can see that, once the data has been sampled, training a
new regressor for different chosen limits is straightforward,
as it does not require recalculation of perturbations. This
implies that, for the Cascaded Regression framework, we
only need to sample the images once. This is a huge time
saving compared to the sampling-based SDM.

5 CONTINUOUS REGRESSION ON CORRELATED
VARIABLES

This section extends Continuous Regression to the space
of correlated variables. We will show that it is possible
to find a closed-form solution for a general case, by as-
suming a different measure (Section 5.1). We then study
the validity of the Taylor expansion to approximate the
input features (Section 5.2). We later introduce our solu-
tion into the Cascaded Regression framework, and show
how our Cascaded Continuous Regression (CCR) implies
a huge training time saving (Section 5.3). We also study
the importance of the new solution (Section 5.4). Then, we
provide a theoretical link to previous work (Section 5.5) and
a geometrical interpretation (Section 5.6).

5.1 Reformulating Continuous Regression

The main problem of existing Functional Regression ap-
proaches is that the integral is defined with respect to
the Lebesgue measure, which implicitly assumes that an
(unnormalised) uniform distribution, in which samples are
uncorrelated, is used. Thus, it is not possible to solve it for
correlated dimensions. To overcome this limitation, we need
to solve the integral with respect to a different measure µ.
We can readily see that the proper measure is the probability
measure, i.e., µ = Pr. Therefore, the problem becomes

M∑
j=1

∫
δs
‖δs−Rf(Ij , s

∗
j + δs)‖22dPr(δs). (14)

Applying the Riemannian form, we can write Eq. (14) as

M∑
j=1

∫
δs
‖δs−Rf(Ij , s

∗
j + δs)‖22p(δs)dδs, (15)

where now p(δs) accounts for the pdf of the sampling
distribution. Interestingly, we can see that by formulating
the integral with respect to a probability measure, we are ac-
tually formulating Continuous Regression by means of the
average expected loss function, rather than from the classical
Functional Regression perspective, which minimises the em-
pirical loss function. The expected loss is actually the function
from which the empirical loss is derived, for example, in
[52], the expected loss function is reduced to the empirical
loss by applying a Monte Carlo sampling approximation.
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Again, we will approximate the feature space by its first-
order Taylor expansion. The integrals are now generally
unbounded (they become bounded for e.g. a uniform dis-
tribution). Following the steps carried out in Section 4,
we expand the features, and group linear, quadratic, and
independent terms, with respect to δs.∫

δs
p(δs)‖δs−Rf(Ij , s

∗
j + δs)‖22dδs ≈

≈
∫
δs
p(δs)

[
δsTAjδs + 2δsTbj + x∗j

TRTRx∗j
]
dδs, (16)

where, as previously, Aj = (I−RJ∗j )
T (I−RJ∗j ) and bj =

J∗j
TRTRx∗j − Rx∗j . We only require the pdf p(δs) to be

parameterised by its mean µ and covariance Σ, so that, for
any symmetric matrix A, the following properties hold [4]:∫

δs
p(δs)dδs = 1,

∫
δs
δsp(δs)dδs = µ,∫

δs
p(δs)δsTAδsdδs = Tr(AΣ) + µTAµ. (17)

It is then straightforward to compute the error, for the j-th
training example:∫

δs
p(δs)‖δs−Rf(Ij , s

∗
j + δs)‖22dδs ≈

Tr(AjΣ) + µTAjµ + 2µTbj + x∗j
TRTRx∗j . (18)

Again, R is obtained after minimising Eq. (18) w.r.t. R, in
which derivatives are obtained as follows:

∂

∂R
Tr(AjΣ) = 2RJ∗jΣJ∗j

T − 2ΣJ∗j
T

∂

∂R
µTAjµ = 2RJ∗jµµ

TJ∗j
T − 2µµTJ∗j

T

∂

∂R
2µTbj = 4Rx∗jµ

TJ∗j
T − 2µx∗j

T

∂

∂R
x∗j

TRTRx∗j = 2Rx∗jx
∗
j
T . (19)

This leads to the closed-form solution:

R =

 M∑
j=1

µx∗j
T + (Σ + µµT )J∗j

T

 ·
 M∑
j=1

x∗jx
∗
j
T + 2x∗jµ

TJ∗j
T + J∗j (Σ + µµT )J∗j

T

−1 . (20)

The similarities between the closed form error in Eq. (18)
and that of Eq. (12) are clear. If p(δs) is defined as a
zero-mean uniform distribution with diagonal covariance
matrix with entries defined as a2

3 (i.e., defined for the limits
a1, . . . , a2n), then Eq. (20) and Eq. (13) would be the same.
It is worth highlighting that the solution does not depend
on the actual sampling pdf, but rather on its first and
second order moments, i.e. Continuous Regression bypasses
the question of which distribution should be used when
sampling the data.

The proposed formulation has important computational
advantages besides the theoretical differences between Con-
tinuous Regression and sampling-based methods like SDM.
In particular, once the training images have been sampled,

training a new regressor under a different configuration
requires very little computation as opposed to the sampling-
based approach. The reason for this is that Continuous
Regression does not require the sampling process to be
repeated, instead it only changes the sampling statistics. For
instance, in the context of Cascaded Regression, given the
statistics for each level of the cascade with respect to the
ground truth, there is no need to sample the images more
than once, which yields a huge time saving. Furthermore,
we can see that there is a matrix form that can help compute
Eq. (20). Let us introduce the following shorthand notation:
M = [µ,Σ + µµT ], B =

( 1 µT

µ Σ+µµT

)
, D∗j = [x∗j ,J

∗
j ] and

D̄∗ = [D∗1, . . . ,D
∗
M ]. Then:

R = M

 M∑
j=1

D∗j

T (D̄∗B̂D̄∗
T
)−1

(21)

where B̂ = B ⊗ IM . Since B̂ is sparse, computing Eq. (21),
once the data is given, is done in a matter of seconds.

5.2 Validity of Taylor expansion

In order to validate the Taylor approximation to represent
the image features, we have designed the following ex-
periment. For a given set of initial statistics Σl, a set of
random perturbations f(I, s∗ + δs) was created, where δs
was drawn from N (0,Σl). Then, we measured the distance
between the Taylor approximation to the ground-truth fea-
tures, as well as to the features extracted from the same
image at different locations. Comparing these two distances
allows to distinguish whether the Taylor expansion gives a
reasonable estimation or a random estimation. The distance
between the Taylor approximation at δsi and the features
collected at δsj (including i = j) is given as:

disti,j =
‖f(I, s∗ + δsj)− (f(I, s∗) + f ′(I, s∗)δsi)‖
‖f(I, s∗ + δsj) + (f(I, s∗) + f ′(I, s∗)δsi)‖

, (22)

This distance is expected to increase with δs. However, de-
spite this increase, we expect samples to be distinguishable
from samples taken from other images.

We have used a random subset of 1000 images from
the training set (see Section 7 for further details). We have
evaluated the distances at the locations defined by a set
of 5 different Σl. More specifically, for l = 3 . . . 7, Σl is
defined as a diagonal matrix the elements of which are set
to 2l−1 (which represents the variance of the displacement
per landmark, in pixels). The results are shown in Fig. 2.
It can be seen that even when the variance is fairly high,
the approximated samples are still distinguishable from
samples collected at other locations (i.e. red lines have
lower error than corresponding blue lines). This validates
the Taylor approximation for a far long margin.

In order to also check the capabilities of a regressor
trained using a Taylor approximation, we have trained two
regressors for each of the Σl described above (one using
the sampling-based approach, and one using Continuous
Regression). For each of the images, a new set of random
locations was generated, and the regressors were used to
predict the shape displacements. Results are shown in Fig. 3.
It can be seen that both regressors have similar accuracy,
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Fig. 2. Results obtained for the Taylor approximation. Red curves corre-
spond to the distances described in Eq. (22), when i = j, for a varying
set of initial perturbations ranging from l = 3 to l = 7. Blue curves
correspond to the distances described in Eq. (22) when i 6= j.

thus validating the assumptions made through the paper.
It has to be noted that these validations hold for such a
large range thanks to the smoothness and the constrained
environment that face tracking generally offers. When the
displacement is far from the ground-truth, the distance
between the approximation and the sampled data increases,
but so it does when collecting the data somewhere else.
Therefore, there is still the possibility of training a regressor
capable of reducing the error, as shown in Fig. 3.

Fig. 3. Results attained by a sampling-based linear regression (green
curves) and a regressor trained using Continuous Regression (red
curves) for the given initial perturbations (blue curves)

5.3 Cascaded Continuous Regression
We can readily extend Continuous Regression to the Cas-
caded Regression framework. To do so, we point out that
the statistics defined in Eq. (20) correspond to those used
in the parallel SDM training proposed in [2], described
in Section 3. In this context, we can train each cascade
level using the corresponding µ(l) and Σ(l). We coin our
method Cascaded Continuous Regression (CCR). The main

advantage of our CCR with respect to SDM is that we only
need to sample the training images once, given that Eq. (20)
only needs to account for the ground-truth features and
their corresponding Jacobians. That is to say, the sampling
process in the CCR training is done only once.

Denoting the cost of sampling an image as O(q), for a
set of M images, K perturbations, and L cascade levels, the
total sampling cost of SDM is O(LKMq). In our proposed
CCR, the sampling is done only once, which is O(5qM),
given that extracting the ground-truth features and Jaco-
bians is O(5q). Therefore, our CCR training presents a com-
putational advantage, with respect to SDM, of LK/5. In our
setting, L = 4 and K = 10, meaning that the Continuous
Regression sampling is 8 times faster (in FLOPS). However,
we have to note that, if we were to train a different model
for a different set of statistics, we would not need to
sample any data again. This means that, under a different
configuration, we only need Eq. (21) to be computed, which
can be done in seconds. In this case, we can see that the total
sampling cost of SDM training would remain O(LKMq),
while retraining a CCR does not entail any sampling, thus
having a null cost. In our configuration, M ≈ 7000 images,
meaning that the computational saving of retraining a
CCR, with respect to SDM, is O(106).

In the case that no prior SDM has been trained, Al-
gorithm 1 summarises the training of CCR. Given the
training images and ground-truth points, CCR needs the
data to be pre-computed, by computing all D∗j . Then, the
process of CCR training basically consists of updating the
initial statistics µ0 and Σ0 (computed for a training set
of annotated videos), to generate a new regressor for each
cascade level. The statistics for each level are generated by
computing the difference of the outputs of the previous level
with respect to the corresponding ground-truth points. For
the first level, a set of initial shapes s0j are generated by
randomly perturbing the ground-truth with µ0 and Σ0.

Algorithm 1: CCR training

Data: {Ij , s∗j , s0j}j=1:M , µ0 and Σ0; L levels
1 Pre-compute: Extract D̄ = {D∗j}j=1:M

2 Pre-compute: D̂ =
(∑M

j=1 D∗j

)T
3 for l = 0 : L− 1 do
4 Compute Ml and Bl

5 Rl = MlD̂
(
D̄B̂lD̄

T
)−1

6 Apply Rl to s
(l)
j to generate s

(l+1)
j

7 Compute distances δsj = s
(l+1)
j − s∗j

8 Update µl+1 = mean({δs}) and
Σl+1 = cov({δs})

9 end

5.4 The impact of the data term

To empirically demonstrate the theoretical influence of the
data term which allows for correlated variables, we com-
pared the performance of a CCR model trained using the
“correlated” solution in Eq. (20) (cor-CCR), with a CCR
model trained using the “uncorrelated” version described
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Fig. 4. Cumulative Error Distribution (CED) curve for both the uncor-CR
(red) and cor-CR (blue). Results are shown for the 49 points configura-
tion. The contribution of a full covariance matrix is clear

in Section 4 (uncor-CCR). Both models were trained on the
Helen database [20], using Algorithm 1. In both cases, the
initial training set is generated by perturbing the ground-
truth shapes according to the statistics measured at the
training partition of 300-VW dataset [41] (see Section 7 for
further details). In uncor-CCR, the statistics for each level
were forced to have zero-mean and diagonal covariance.
Otherwise the two versions are the same. We evaluated
both models in the most challenging subset of the 300-
VW test partition. Results in Fig. 4 show the Cumulative
Error Distribution (CED). It is immediately clear that the
contribution of cor-CCR is significant, and thus that shape
dimensions are significantly correlated. The result of this
experiment clearly demonstrates the importance of solving
Continuous Regression in spaces of correlated variables.

5.5 Connection to related work

In this section, we link our work to that of [21]. More specif-
ically, we show that one can first compute the functional
covariance in a similar fashion to that of [21], and then link
it to the Least-Squares solution. To do so, we first observe
that the normal equations shown in Eq. (13) can actually be
written by means of a covariance matrix as [49]3:

Cov(X,Y ) = Cov(X,X)R, (23)

where we used the term Cov to refer to the data covari-
ance, as opposite to Σ referring to the covariance of the
sampling pdf. While [21] applies a polytope approximation
to estimate the covariance matrix, we rely on the first-order
Taylor expansion of the feature space. We have to note
that [21] approximates the covariance matrix by considering
combinations of training samples, while in our case we want
to generate perturbations on the training data, and therefore

3. Without loss of generality, we can assume that the input data and
the shape displacements are zero-mean

the polytope approximation would not fit our problem. We
can compute the functional covariance matrix as follows:

Cov(X,X) =
∑
j

∫
δs
p(δs)f(I, s∗j + δs)f(I, s∗j + δs)T dδs.

(24)
If we approximate the input features by its first-order

Taylor expansion, we can see that:

f(I, s∗j + δs)f(I, s∗j + δs)T ≈

x∗jx
∗T
j + x∗jδs

TJ∗
T

j + J∗jδsx
∗T
j + J∗jδsδs

TJ∗
T

j . (25)

We can use Eq. (17), and the fact that
∫
p(δs)δsδsT =

Σ + µµT to further expand the covariance as:

Cov(X,X) =
∑
j

x∗jx
∗
j
T + 2x∗jµ

TJ∗j
T + J∗j (Σ + µµT )J∗j

T ,

(26)
which is, exactly, the invertible part of Eq. (18). We can
readily see that the covariance can be expressed as:

Cov(X,X) = D̄∗B̂(D̄∗)T . (27)

Similarly, we can see that:

Cov(X,Y ) =
∑
j

∫
δs
δsf(I, s∗j + δs)T dδs ≈

≈
∑
j

µx∗j
T + (Σ + µµT )J∗j

T . (28)

Obtaining Eq. (20) from Eq. (23) is straightforward given
Eq. (28) and Eq. (27). Interestingly, we can take advantage of
this approach to generate our PCA models for each cascade
level. These models are used to reduce the dimensionality
of the feature space, and therefore need to be computed in
the perturbed image space. This way, we can easily generate
each of the models just by applying an eigendecomposition
of the functional covariance of Eq. (27).

5.6 Geometric interpretation
Finally, we want to elaborate on the meaning of the “data
term” in the Continuous Regression framework, i.e., the role
of a pdf given that an infinite set of samples is taken. To do
so, we can analyse the solution presented in this paper from
the Information Geometry perspective [1], [30], in which a
geometrical interpretation can be applied to the probability
measure. In the uncorrelated case, i.e. when using a diagonal
covariance matrix, the manifold of shape displacements is
a 2n-dimensional parallelepiped, spanned by the Cartesian
basis, defined for each of the shape dimensions. When we
extend the Continuous Regression to full covariance matri-
ces, we are rotating the manifold of shape displacements
according to the eigenvectors of Σ, and the origin of the
coordinates axes is displaced to µ. Fig. 5 illustrates this
geometrical interpretation graphically.

6 INCREMENTAL CASCADED CONTINUOUS RE-
GRESSION

This section introduces the process of updating a CCR
model using a new set of images and estimated shapes.
We will show that our incremental CCR (which we coin
iCCR) has a complexity that yields real-time performance.
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Fig. 5. Difference between classical Functional Regression (Left) and
CR in correlated variables (Right). The green area represents the
volume within which samples are taken. Left: a diagonal covariance
matrix, with entries defined as a2

3
. Right: a full covariance matrix and

a non-zero mean vector. The sampling space is translated to the centre,
defined by µ, and rotated according to the eigenvectors of Σ.

Fig. 6. Overview of our incremental cascaded continuous regression
algorithm (iCCR). The originally model RT learnt offline is updated with
each new frame, thus sequentially adapting to the target face.

To the best of our knowledge, the iCCR update is the first
Cascaded Regression method achieving real-time capabili-
ties. Results shown in Section 7 demonstrate the importance
of incremental learning to achieve state-of-the-art results,
thus illustrating the advantages of a real-time incremental
learning algorithm.

Once a regressor has been trained, we might want to
incorporate new images to the model, without the need of
recomputing Eq. (20). This is very important for the task of
face tracking, since it has been reported that generic models
perform worse than person-specific models. Since training a
person-specific model a priori is not an option in most use
cases, adding samples to a generic model as the face is being
tracked may help the model to track a specific person better
in future frames. An overview of the incremental learning
procedure is depicted in Fig. 6.

However, we can not retrain the full models by incorpo-
rating new images to the original training set, as it would be
far too slow, and therefore is not computationally tractable.
Some previous works [2], [53] have attempted to incorporate
the online learning to their current models, by applying
the recursive least squares to a trained model. However,
both methods are very slow, and thus are impractical for
real-time tracking. It should be noted that the good results
reported by [2], [53] rely on the fact that videos were tracked
offline, meaning that the update methods could take their
time to learn while following frames politely waited for their

turn to be tracked. Such affordances are not present when
tracking from a live video stream, e.g. a webcam.

Let us devise the incremental learning update rule for the
Continuous Regression. To do so, let us assume that we have
a regressor RT , trained using Eq. (21), on a training set T .
Also, we denote the covariance matrix for the training data
as VT := Cov(X,X) = D̄∗T B̂(D̄∗T )T . The incremental (also
known as online) learning aims to update RT with a set of S
new images, for which the ground-truth image features and
Jacobians are extracted. Let D∗S be the data corresponding
to the updating samples. We can define a forgetting factor
λ, which sets the influence of a given frame (the lower the
λ, the more influence a frame has on the update), and define
Wλ = λI2n+1, with I2n+1 the (2n+ 1)-dimensional matrix.
Then, the new regressor would be computed as:

RT ∪S = M

 M∑
j=1

D∗j + W−1
λ D∗S

T (VT ∪S)
−1
, (29)

where

(VT ∪S)
−1

=
(
VT + D∗SBW−1

λ D∗
T

S

)−1
. (30)

We can apply the Woodbury identity [4] to Eq. (30):

VT ∪S
−1 = VT

−1−

VT
−1D∗S

(
WλB

−1 + D∗S
TVT

−1D∗S

)−1
D∗S

TVT
−1. (31)

This way, obtaining the inverse of the covariance ma-
trix is computationally feasible. During tracking, the set S
consists of a tracked image with its estimated landmarks,
assuming these to have been correctly fitted. We can readily
see that the sampling cost of the iCCR update is fixed to
O(5q), and does not depend on the number of cascade lev-
els, whereas the incremental SDM (iSDM), requires the sam-
pling process to be carried out for each cascade level. We can
see that Eq. (31) needs to compute the inverse of the matrix
WλB

−1 + D∗S
TVT

−1D∗S , which is (2n + 1)-dimensional.
This operation has a complexity ofO((2n+1)3). That is, the
computational complexity of inverting that matrix is cubic
with respect to the number of points. However, we can alle-
viate this computation by working with a PDM [10], instead
of predicting over the points in a direct way. In a PDM, a
shape s is parameterised in terms of p = [q, c] ∈ Rm, where
q ∈ R4 represents the rigid parameters and c represents
the flexible shape parameters, so that s = tq(s0 + Bsc),
where t is a Procrustes transformation parameterised by q.
Bs ∈ R2n×m and s0 ∈ R2n are learnt during training and
represent the linear subspace of flexible shape variations.
This way, the Continuous Regression formulation would be
simply transformed into:

M∑
j=1

∫
δp
p(δp)‖δp−Rf(Ij ,p

∗
j + δp)‖22dδp, (32)

where the Jacobians now need to be computed with respect
to the PDM. To do so, it suffices to apply the chain rule:

∂f(I,p + δp)

∂p
=
∂f(I,p + δp)

∂s

∂s

∂p
, (33)

where ∂s
∂p can be analytically computed from the shape

model, and ∂f(I,p+δp)
∂s is computed as in Eq. (7). This
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way, the Continuous Regression solution is exactly the
same as shown in Eq. (20), with the Jacobians now be-
ing computed with respect to the PDM. Now, the matrix
WλB

−1 + D∗S
TVT

−1D∗S is m dimensional, and thus its
inversion is O(m3). In our experimental set-up, 2n = 132,
and m = 24. The computational saving is obvious.

Now, we can further analyse the update complexity,
noting that the most expensive step in the updating process
is not computing the inverse of WλB

−1 + D∗S
TVT

−1D∗S ,
but rather computing DS

TVCT
−1

, which has a complexity
cost of O(d2m) (assuming a PDM is used). The overall
computational cost of updating a regressor is

O(3md2) +O(3m2d) +O(m3). (34)

We compare this updating cost with the sampling-based
SDM update proposed in [2], which was formulated as:

RT ∪S = RT −RTQ + YSX
T
SVT ∪S

Q = XSUXT
SVT

U =
(
IK + XT

SVTXS
)−1

VT ∪S = VT −VTQ (35)

where IK is the K-dimensional identity matrix. We can
readily see that the main bottleneck in this update comes
from computing VTQ, which is O(d3), i.e., the iCCR update
is an order of magnitude faster than the sampling-based SDM
update proposed in [2]. This brings the cost of updating from
the ∼ 4 seconds reported in [2] down to ∼ 0.2 seconds,
which is the total update time in our sequential Matlab
implementation of iCCR.

7 EXPERIMENTAL RESULTS

To evaluate our proposed approach, we have tested our
CCR and iCCR methods on the most extensive benchmark
that exists to date: 300VW [41]. To compare our proposed
methods against top participants, we develop a fully auto-
mated system, which includes automated initialisation, as
well as a tool to detect that tracking is lost. This way, we can
compare our methods in exactly the same conditions that
were set up for the benchmark. We will show that our fully
automated system achieves state of the art results, as well
as the importance of incremental learning. Code for training
and testing is available on the lead author’s website.

7.1 Experimental set-up

Test Data: All methods are tested on the 300VW [41] dataset,
which, to the best of our knowledge, is the most extensive
and recent benchmark in Face Tracking. The dataset consists
of 114 videos, each ∼ 1 minute long, divided into different
categories. 50 videos are used for training, whereas the
64 remaining videos are subdivided into three categories,
intended to represent increasingly unconstrained scenarios.
Category 1 contains 31 videos recorded in controlled condi-
tions, whereas Category 2 includes 19 videos recorded un-
der severe changes in illumination. Category 3 contains 14
videos captured in totally unconstrained scenarios. All the
videos are of a single-person, and have been annotated in
a semi-supervised manner using two different methods [8],

[46]. All frames in which the face appears beyond profile-
view have been removed from the challenge evaluation, and
therefore are not considered in our experiments either.
Error measure: The error measure is that defined for 300VW.
It is computed for each frame by dividing the average
point-to-point Euclidean error by the inter-ocular distance,
understood to be the distance between the two outer eye
corners. More specifically, if ŝ is the estimated shape, and s∗

is the ground-truth shape, the RMSE is given as:

RMSE =

∑n
i=1

√
(x̂i − x∗i )2 + (ŷi − y∗i )2

doutern
, (36)

where douter is the Euclidean distance between the points
defined for the outer corner of the eyes, measured on the
ground-truth. The results are summarised in the form of
Cumulative Error Distribution curves (CED), along with the
Area Under the Curve (AUC).

7.2 Training

Data: We use data from different datasets of static images
to construct our training set. Specifically, we use a total of
∼7000 images taken from Helen [20], LFPW [3], AFW [60],
IBUG [36], and a subset of MultiPIE [18]. We have used the
facial landmark annotations provided by the 300 faces in
the wild challenge [35], [41], as they are consistent across
datasets. Our models are trained for a 66-point configura-
tion. In order to ensure the consistency of the annotations
with respect to the test set, the Shape Model is constructed
using the training partition of 300VW, and has 20 non-rigid
parameters and 4 rigid parameters [27].
Training: As shown in Algorithm 1, the training of CCR
starts from a set of given statistics (µ0 and Σ0). In our
experiments, the statistics are computed across the training
sequences, by computing the differences between consec-
utive frames. That is to say, µ0 and Σ0 are meant to
model how the shapes vary from frame to frame. The main
idea of this approach is to replicate a real scenario when
“perturbing” the ground-truth. Given that the training set
shows smoother variations w.r.t. the test set, we compute the
differences between frames separated by two and three time
steps. This way, higher displacements are also captured.
Features: We use a HOG [14] implementation, with a block-
size of 24 pixels, subdivided in 4 blocks, and 9 bins, re-
sulting in a 9504-dimensional vector. We apply PCA on
the output, retaining 2000 dimensions, i.e., d = 2000. To
generate a PCA model per cascade level, we compute the
functional covariance shown in Eq. (27).
Cascade levels: In our experimental set-up, we have fixed
the number of Cascade levels to L = 4.

7.3 Testing

Initialisation: The tracker is initialised at the beginning of
each sequence, as well as each time the tracker is detected
to have lost a fitting (see details below). The initialisation
utilises the open-source dlib face detection to locate the face
bounding box (dlib.net), and then predicts the shape with
a Context-based SDM [38]. Then, a single CCR iteration is
carried out.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 7. CED’s for a set of different forgetting factors, along with the cor-
responding AUCs (Category 3). Red curve shows the Oracle. Magenta
shows the best factor found for that Category. Green curve shows the
results attained by the forgetting factor found on the training set. Blue
curves are results attained by other learning rates

Incremental learning update: The incremental learning
needs to filter frames to decide whether a fitting is suitable
or harmful to be used for the model updates. We use
a simple heuristic with a linear SVM, trained to decide
whether a particular fitting is “correct”, understood as being
below a threshold error. In order to avoid redundancy, once
a frame has been used to update the models, we consider
no more frames within a window of 3 consecutive frames.
Given that videos are of a single person, we do not need
to perform any face recognition to guarantee that updated
models keep tracking the same person with updated, and
thus personalised, models. For the iCCR update, we collect
person-specific statistics on a sliding window of 50 frames,
so that the person-specific variations are encoded in the
statistics used to update the model. The forgetting factor λ,
has been found through validation on the training set, and is
set to λ1 = 0.01, λ2 = 0.025, λ3 = 0.05 and λ4 = 0.1, where
λl is the learning rate for the l-th cascade level, and the
lower the λ, the more influence a frame has on the update.
We evaluate the sensitiveness of iCCR w.r.t. λ in Section 7.4.
Loss of tracking detection: Sometimes the tracker fails
to track a face. This occurs in particular when there are
significant occlusions or head-poses beyond profile. In these
cases, we need to detect that the tracker has lost a face, in
order to reinitialise it in the next frame from the face detector
output. We used the same SVM learnt for the incremental
learning update to also detect whether the tracker is lost
or not, by empirically selecting a suitable threshold for the
score returned by the SVM model.

7.4 Influence of the forgetting factor
The forgetting factor has been found through validation on
the training partition, and set up as shown above. In general,
it has been found that the top levels of the cascade are less
sensitive to an error in the update, and therefore a smaller
factor can be used (meaning a higher impact of the given
frame). However, for the last levels of the cascade, a low

factor can have a big impact if the frame to be updated is
not “entirely” correct. Since the score of an SVM is used to
detect whether a frame is suitable or not for the update, it is
likely that eventually a partially correct frame will be used.
To measure how well the found values generalise to the test
set, we have included an experiment in Category 3 showing
the performance of other forgetting factors. The overall
results are shown in Fig. 7. It can be seen that other values
would produce similar results. In addition, we include the
error given by an “Oracle” (red curve), understood as the
aggregated error for a scenario in which the best forgetting
factor is chosen for each video independently. That is to say,
red curve represents the results that would be attained if we
could choose the best forgetting factor per video (fixed for
the whole video). It can be seen that the red curve does not
show a significant improvement over the best blue curve,
meaning that in general the learning rate might have a
limited impact in the results.

7.5 Equivalence with SDM
In order to demonstrate the performance of our CCR
method compared to SDM, we have trained an SDM model
under the same conditions as for CCR. More specifically,
we have used the same training set, and the same statistics
measured for the first level. The training was then done in
a sequential manner, in a similar fashion to that of Algo-
rithm 1. The number of cascade levels was again set to 4.
The PCA models were directly computed over the sampled
images, and comprise 2000 components. The SDM model
was tested in the test partition of 300-VW under exactly the
same conditions than those of CCR and iCCR. The results
attained by our SDM model are shown in Fig. 8.

7.6 Comparison with state of the art
We evaluate our fully automated tracking system in exactly
the same conditions as those used for the 300VW bench-
mark. We compare our method with respect to the top two
300VW results [50], [56]. We report results for the configura-
tions of 49 points. In order to compare our method against
[50], [56], we asked these authors for their results, which
were kindly provided. For the fairest comparison with re-
spect to the 300VW evaluation, we removed the frames that
were not considered for the evaluation (i.e. those including
faces beyond profile). To show the benefits of incremental
learning, we include the results of both our CCR and iCCR
systems in all curves, as well as our trained SDM. CED
results are shown in Fig. 8, and the AUC for each method is
shown in Table 1. It is interesting to remark that the methods
we compare with made contributions to the initialisation
of the tracker in each frame, or to failure detection. In our
case, even with a simple heuristic for both initialisation and
failure detection, we are capable of attaining comparable or
even superior performance over [50], [56]. The initialisation
for each frame in our tracking system is simply the output
of the previous frame. We do not include any multi-view
models or progressive initialisation, but instead ensure that
the statistics used to generate our models generalise well to
unseen scenarios.

It is unlikely that algorithms with slower running times
than iCCR, such as [50], [56], would attain their high accura-
cies if forced to process challenging videos in real-time. This



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

has important consequences for tracking streaming video,
in which frames must be tracked as fast as they arrive in
order to make use of the limited movement of facial points
between adjacent frames, something that is beneficial to
trackers of any ilk.

It is worth highlighting that CCR and SDM models
were reinitialised in ∼ 0.51% and ∼ 0.56% of total frames
(> 121000), respectively, whilst the iCCR was reinitialised
in only ∼ 0.34% of the frames. This illustrates the sta-
bility of our models, resulting in a simple yet effective
tracking system. Specially remarkable is the importance of
the Incremental Learning in challenging sequences, such
as those shown in Category 3, to achieve state of the art
results. As shown throughout the paper, the complexity of
our incremental learning allows for real-time implemen-
tation, something that could not be achieved by previ-
ous works on Cascaded Regression. Some visual examples
are depicted in Fig. 9. Code and videos can be found at
http://continuousregression.wordpress.com.

Method Category 1 Category 2 Category 3
iCCR 0.5978 0.5918 0.5141
CCR 0.5657 0.5539 0.4410
SDM 0.5617 0.5522 0.4380

Yang et al. [56] 0.5981 0.6025 0.4996
Xiao et al. [50] 0.5814 0.6093 0.4865

TABLE 1
AUC for 49 points configuration for the different categories.

8 CONCLUSION

We have proposed a novel formulation for the problem of
Continuous Least Squares in spaces of correlated variables,
namely Continuous Regression. We have shown the relation
that exists between the sampling distribution and the space
within which samples are taken, and have proposed a solu-
tion for general feature descriptors. We then incorporated
the Continuous Regression within the Cascaded Regres-
sion framework, and showed its performance is similar to
sampling-based methods. We devised an incremental learn-
ing approach using Continuous Regression, and showed
its complexity allows for real-time performance. Results
demonstrate the state-of-the-art performance in challenging
sequences, whilst being able to run in real-time. We also
want to note that while we tackle the facial landmark
tracking problem, cascaded regression has also been applied
to a wider range of problems such as pose estimation [16],
model-free tracking [48] or object localisation [58], thus
meaning the contributions of this paper can be extended
to other problems. Future work will include also the optimi-
sation of the learning process, given that a better classifier
than a SVM would probably select better frames, and we
will also investigate the effect of the forgetting factor under
different configurations.
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