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Abstract 

The fermentation process of salamis involves several parameters influencing taste, texture, 

and color of the salami. One significant parameter is the fermentation time. It is difficult to 

conduct sensory evaluations to assess the effect of time without introducing variation between 

observation days. It may be possible to overcome this by stalling or pausing the fermentation 

by deep-chilling the salamis. This study investigates the difference of non- and deep-chilled 

salamis with the use of a multispectral imaging system. The statistical investigation, based on 

image features relating to size, visual texture, and color of the sausages over time, showed 

that it may be possible to stall the fermentation process. It was shown that a statistical 

difference in the two kinds of samples is present. For the size feature the difference could be 

quantified into a number of days. However, for the important color feature only a statistical 

difference was observed, whereas the visual difference expressed in terms of ΔEab
* was 

barely present. 

Keyword Fermentation; salami; texture; multispectral imaging; color assessment 
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1 Introduction 

The visual changes during the fermentation process of salamis occur due to evaporation and 

acidification. The changes are expressed in terms of shrinkage of the salami diameter, a 

graduate color change and a texture change as visualized in Figure 1. 

A sensory panel is a strong method to precisely determine quality parameters of food (Van 

Kleef et al., 2005), but variations in their assessment can occur, especially when the same 

product is assessed at different time points. This is of particular relevance for fermented 

products like salamis, where the sausage is developed over time. In order to avoid such 

variations it would be advantageous to present all fermentation stages of the salamis to the 

sensory panel at once. Having all fermentation stages could be achieved by starting the 

salami production at different time points, but this can cause variations between batches, 

which also should be avoided. Instead it would be beneficial to have a method for stopping or 

pausing the fermentation process, such that a sensory panel can be exposed to all 

fermentation stages at the same trial and perform an equal assessment of the salamis. This 

pausing of the fermentation process is possible by deep chilling the samples. It is however 

important that the deep-chilling does not influence the salami. 

In this study we investigate how deep-chilling influence the appearance using multispectral 

images. To do this we provide a set of tools for processing and analyzing the multispectral 

images of salami. A vision system is an obvious choice for a comparison study like this, since 

the illumination is consistent across acquisition days, and therefore ensures equal and 

objective assessment properties across fermentation stages. 

Image analysis is widely applied in assessment of food products. Several studies describe 

how computer vision systems and subsequent image analysis can be used in the process of 

describing various meat products (Valous et al., 2009; Chmiel et al., 2011). The studies relate 

to both color and visual texture of the products. Mendoza et al. (2006) reviewed how different 

vision systems were employed to assess color and other attributes of agricultural foods. 

Image analysis has also proven useful in the analysis of ripening stages for fruits and 

vegetables (Mendoza and Aguilera, 2004; Xing and De Baerdemaeker, 2005; Steinmetz et al., 

1999), identification of previously frozen products (Brosnan and Sun, 2004; Sharifzadeh et 

al., 2013; Pu et al., 2015; Ropodi et al., 2018), and spoilage detection in meat (Dissing et al., 

2012; Tsakanikas et al., 2016). Feng and Sun (2013) investigated Pseudomonas loads in 

chicken fillets using near infrared hyperspectral imaging. Based on multispectral imaging in 

the visible and near infrared (NIR) regions, Ma et al. (2014) presented a rapid and non-

destructive method for determining the aerobic plate count (APC) in cooked pork sausages. 

Ropodi et al. (2017) used multispectral imaging in detection of minced beef adulteration with 

horse meat. 

The feasibility of applying different data analytic methods in food science is addressed by 

several authors. Pu et al. (2015), were – among other things – investigating texture analysis, 

Ma et al. (2014) used partial least squares regression in calibrating relationships, Ropodi et al. 
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(2018), and Tsakanikas et al. (2016) introduced methods related to machine learning. Work 

presented in this paper is inspired by the studies in Møller (2012). 

We quantify appearance features related to size, color, and visual texture of fermented salami 

slices using image analysis. Our results showed subtle differences between deep-chilled and 

non-chilled samples. The differences were quantified by statistical models and principal 

component analysis (PCA). The analysis revealed a statistical difference, but this significance 

is not necessarily translatable to visual difference. Measured in the CIELAB color space this 

difference was below the human visible threshold. 

2 Materials and Methods 

During the fermentation process of a salami its circumference decrease and the color changes. 

Moreover, the firmness or texture of the product also changes. This time dependent change 

was captured by extracting descriptive features from multispectral images. These features 

were compared for the deep-chilled and non-chilled samples to investigate whether a time 

dependent change was present. 

2.1 Samples and Instrument 

The rate of the changes during the fermentation process is determined by factors like 

fermentation culture, smoke time, fat and meat content, pH drop, etc. In this study we 

considered four different recipes of starter cultures, and keept all other factors constant. This 

resulted in four different fermentation processes. 

We studied samples from specific days (2, 3, 9, 14, 21 and 42) after fermentation start, as 

illustrated in Figure 1. The observation frequency in the beginning of the fermentation 

process is higher than in the end since the meat cures faster in this period (Huefner and 

Hertel, 2008). On these days, two samples of each recipe were taken from the smoker. From 

one sausage three slices of ∼ 2 cm were cut and imaged with the multispectral imaging 

system. The other sausage was placed in the cooler at −2°C until day 42, deep-chilling. At 

day 42, these samples were taken out of the cooler and put in the refrigerator until they 

reached a temperature of 5°C. Similar to the non-chilled samples, the deep-chilled samples 

were now sliced and imaged with the multispectral imaging system. Consequently, the chilled 

samples were stored at −2°C for a different number of days when imaged. 

This study has a total of n = 132 observations. For the first five observation days, three 

replications of four recipes for both chilled and non-chilled samples were imaged. On the last 

observation day, only non-chilled samples were imaged, since the test series was finished and 

no more samples were deep-chilled. 

In this study we employed the multispectral imaging system VideometerLab that depicts 

objects with a diameter of up to 10 cm using wavelength specific diffuse illumination, making 

it ideal for salami slices. The resulting images were 2056 × 2056 pixels with a pixel size of 

45 μm. The instrument had 19 spectral bands – 12 visible and 7 near-infrared bands. More 

specific information on the vision system can be found in Ljungqvist et al. (2014). 
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2.2 Image analysis 

Figure 2 presents the steps in the analysis of the multispectral image – from segmentation to 

feature extraction and statistical analysis. All steps will be described in the rest of this 

section. 

2.2.1 Segmentation 

Canonical discriminant analysis (CDA) was applied to segment the images. This supervised 

classification procedure use training areas of k classes for defining a discriminator function, Y 

=dTX. d is found by maximizing the Rayleigh coefficient 

 ( ) ,
T

T
R 

d Bd
d

d Wd
  [1] 

corresponding to maximizing the ratio of the variation between (B) relative to within classes 

(W). We may obtain k − 1 uncorrelated solutions with decreasing discriminative power. 

We also applied normalized CDA (nCDA). In that case, the canonical discriminant score 

were normalized such that 

y




y y
y

s
 [2] 

with y  and sy representing the estimated mean and standard deviation. This way we ensured 

canonical discriminant functions centered around zero, and hence an easy thresholding for 

segmentation was obtained. 

The CDA and nCDA were used as segmentation tools. Though they are supervised methods 

they require minimum manual work for finding training areas. First a segmentation of 

background and salami was performed by CDA. The variation of the background is relatively 

small compared to the salami itself, and the method discriminates well. The next step was to 

identify pixels of meat and fat of the salamis. Here the training areas were found on day 9 

samples, reflecting the variation present across all fermentation stages. The segmentation 

results were improved by performing a spectral pre-treatment. The pre-treatment is a pixel-

wise operation, where all bands were divided by the third spectral band (435 nm). The third 

band is left out of the subsequent nCDA, where an increase in Rayleigh coefficient was 

observed for the pretreated data. An example of the final segmentation is shown in Figure 3. 

2.3 Width of Salami 

From the segmentations of background and salami the width of the salami was found in the 

horizontal direction. In case the chilling process influenced the structure and evaporation 

properties of the salami it could lead to a difference in this physical parameter. 

2.4 Texture 
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Figure 1 shows the fermentation progress for one recipe of salami, where a change in image 

texture over time is seen as an increase in blended meat and fat pixels. In this section 

references to texture will relate to the image texture given in terms of changes in pixel values. 

We will describe a possible way to capture the change in texture by considering gradient 

magnitude histograms (Lowe, 2004). The gradient of an image, f, is defined as 

,x y

f f
f e e

x y

 
  

 
 [3] 

where ex and ey are the unit vectors in the x- and y-directions respectively. The gradients in 

the image will be estimated by central differences (Elden et al., 2004). All the gradients in an 

image have an orientation, θ, and a magnitude, m. 

In this study we used the distribution of the gradient magnitudes of the salami images to 

characterize the fermentation process. The gradient magnitude histograms will be found at 

different scales, such that scale-dependent texture changes will be captured. The scales 

considered were found at five levels of a Gaussian pyramid. In each level of the pyramid, the 

image was convolved with a Gaussian kernel and the resolution is halved. The number of 

bins in the histogram was fixed for each scale. Moreover, the limits of the histogram were the 

same for all samples making the histograms comparable across samples. Figure 4 shows an 

example of gradient magnitude images at the five levels of the Gaussian pyramid. In this 

analysis we applied the background-salami mask found previously, such that the texture 

measure only represented the salami itself. 

Several parameters influenced the histograms. The number of scales was chosen to be five in 

this case. The number of bins for each histogram was fixed at 64. For each wavelength and 

number of bins, the histogram was found by concatenating the histograms for the five 

considered scales. An example of a concatenated histogram of a day 2 sample is seen in 

Figure 4. 

After careful analysis it was decided to use the 17th band in the analysis of the changes in 

visual texture. This band gave good contrast between the meat and fat parts of the salami 

slices, and was therefore suitable for capturing the visual texture difference. 

2.5 Statistical Color Information 

From the rim of the salami, a gradual color change of the meat parts takes place during the 

fermentation process – see Figure 1. In order to capture the variation in meat color between 

the samples we defined a meat color scale based on an nCDA, using training areas from non-

chilled samples at days 2 and 42. All samples were subsequently mapped to the obtained 

nCDA space. Negative values of the nCDA meat color scale reflect fresher meat, whereas the 

positive values represent the darker, fermented meat. It is important to mention that the 

nCDA was trained on the non-chilled samples, so the deep-chilling process is not already 

accounted for in the analysis of the color feature. The CDA loadings for each of the 19 

spectral bands are summarized in Figure 5. In general the CDA measured the difference 
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between the longer wavelengths, red (645 - 660 nm) and NIR (890 - 970 nm), which is 

consistent with a change in red meat color. 

Results of using the statistical color scale are also seen in Figure 5. In order to highlight the 

spatial variation we extracted the average pixel value in annuli at predefined radii from the 

center of the salami. The maximum radius considered, maxr , was defined as the average width 

across all samples. For the samples that had a maximum radius smaller than maxr , the missing 

pixel averages were found by extrapolation. In the present study we used 31 equidistant radii. 

Thus for each salami sample an observation Yi = (Yi, 1, …, Yi, 31)T, i = 1, …, 132, was 

obtained, where Y(i, j) is the average nCDA colour value at radius rj for sample no i. The Y 

coordinates are strongly serially correlated and in order to describe the spatial variation they 

were transformed into their principal components where the first two were retained for further 

analysis. 

2.5.1 CIELAB Color Information 

In the statistical color measurement, all spectral bands were employed to obtain a general 

measure of color change. This approach is well suited for identification of even subtle 

differences. In food research, it is common to measure color in the CIELAB color space, 

since this relates well to human perception of color (Larraín et al., 2008). We converted the 

pixel-wise multispectral information to L*, a*, and b* pixel values by a photometric imaging 

model (Trinderup et al., 2015). For the three color components we followed the same strategy 

as for the nCDA meat color scale and determined the average color value in annuli and 

subsequently analyzed the spatial variation by looking on the three sets of principal 

components of the CIELAB values ,1 ,31( , , )L L T
i iY Y , ,1 ,31( , , )a a T

i iY Y , and ,1 ,31( , , )b b T
i iY Y . 

Furthermore, we assessed the color differences between the deep-chilled and non-chilled 

samples by computing the ΔEab
* value (see e.g. Trinderup et al. (2015)) for the annuli 

considered above, and also for the inner third of the salami which is commonly used for 

sensory panel scoring. The ΔEab
* parameter measures color differences by the Euclidean 

distance in the CIELAB space. 

2.6 Statistical Analysis 

The statistical analyses of the features defined above were made using the procedures GLM, 

GLMSELECT and NLIN from SAS/STAT® software. As a first approximation we shall fit 

polynomial models like 

2( ( )) ( ) ,

{0,1}, {1,2,3,4}

ij ij i j ij ijE X t t c r t t

i j

       

 
 [4] 

to the variable X. Here t is a time point, c and r are the main effects of chilling and recipe; i 

relates to deep-chilled/non-chilled and j to recipe type. In order to identify simpler models we 

used stepwise model selection. Beal (2007) has compared different model selection criteria 

and found that Schwarz’ Bayesian Information Criterion (SBC) gave superior results in a 
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series of simulation studies. Using SBC we in most cases ended up with models not 

containing any recipe dependence, i.e. 

2
0 0 0

1 2
1 1 1

, 0
( )

, 1

t t i
t

t t i

    
  

    

 [5] 

In many cases the second order t-term was common, i.e. we have 

2
0 0

2 2
1 1

, 0
( )

, 1

t t i
t

t t i

    
  

    

 [6] 

The deep-chilling and subsequent thawing may release some water from cells and make it 

more available for evaporation, and these can be see an increased evaporation in the 

beginning, i.e. an accelerated thawing possibly corresponding to a time shift. Similarly other 

processes might accelerate due to the thawing proces, e.g. caused by the partial destruction of 

cells etc. Such accelerations can be accounted for by a model like: 

2

3 2

, 0
( )

( ) ( ) , 1.

t t i
t

t t i

    
  

     
 [7] 

Here δ represents the time shift between deep-chilled and non-chilled samples. For the 

analysis of the width of the salami we used a model based on simple, physical assumptions 

about the evaporation from the salami. If we assume that the evaporation at time t is 

proportional to the amount of water y(t) in the salami, y(t) will be exponentially decreasing. 

Therefore, it seems natural to expect that the volume and hence also the diameter will 

decrease asymptotically to a limit larger than zero (determined by the amount of dry matter). 

Taking the possible time shifts into consideration we ended up with the model 

4

exp , 0

( )

exp , 1.

t
i

t
t

i

  
     

  
  

         

 [8] 

The models in [5] - [8] were applied in the analysis of the features extracted from the 

multispectral images relating to width, texture and colour of the salamis. 

3 Results and Discussion 

3.1 Width Features 

From the segmentations of background and salami the width of the salami was found in the 

horizontal direction. The width of the samples decreases after fermentation start, which can 

be seen in Figure 1. After day 21 it seemed like the shrinkage stalled. Figure 6 shows the 

development in width of salamis along with the fit of the three models [6], [7] and [8]. The 

residual standard deviations for the three models were 0.36, 0.35, and 0.47, thus there were 

no substantial differences in the goodness of fit of the three models. 
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In the fit of the models μ3(t) and μ4(t) the δ parameter was estimated to -0.505 and -0.977 

respectively indicating that the deep-chilled samples were approximately 0.5 or 1 day ahead 

in the fermentation process compared to the non-chilled samples. 

3.2 Texture Analysis 

The forming and growth of ice crystals may cause leakage and thus lead to textural changes 

in frozen-thawed meat products. Pu et al. (2015) investigated texture analysis (histogram 

statistics on principal component images, gray level co-occurrence matrices, and gray level-

gradient co-occurrence matrices) in the classification of frozen-then-thawed meat. 

Since there is nothing canonical about the resolution of the multispectral images, we – as 

described in section 2.4 – decided to investigate texture features based on gradient magnitude 

at five different scales. With histograms of 64 bins, this resulted in a feature vector of length 

320 for each sample. 

We performed a PCA on this dataset consisting of 132 samples of the 320-dimensional 

texture vector. The first three principal components explained 80.7% of the variance in the 

histogram data, with the first PC explaining ∼64%. As can be seen from the loadings given in 

Fig. 7, the first PC was dominated by the difference between the lower gradient magnitude 

values and the high gradient values at all scales. Therefore, a high value of PC1 corresponds 

to an image dominated by high gradients, i.e. sharp edges between fat and meat. A low value 

corresponds to few high gradients and many low, i.e. a more blurry image with more ’fuzzy’ 

borders between fat and meat. 

It is important to notice that we were not interested in discriminating between the deep-

chilled and non chilled samples. Had that been the case, e.g. Ropodi et al. (2018), and 

Tsakanikas et al. (2016) give good surveys of data-analytic tools for that, including support 

vector machines, partial least squares discriminant analysis, and Gaussian Mixture models. 

Our aim was to model a possible difference between non-chilled and deep-chilled samples. 

By a statistical analysis of the first PC we could to some extend establish whether the texture 

feature is descriptive of a potential difference between the non-chilled and chilled samples. 

Again we found a general linear model by a stepwise selection method from the model in [4]. 

The identified significant effects gave rise to a model as in [5] describing the time dependent 

texture change. The fit of this model to PC1 is seen in Fig. 7, where it is also obvious that the 

value of γ1 is very close to zero. This difference in parameter for the second order polynomial 

term could be a consequence of missing data points for the chilled samples on day 42. In case 

we force the model to have the same polynomial term for the two types of treatment, we 

obtained a model as in [6]. The fit of this model is also shown in Figure 7. 

The results indicate that there is a statistical difference in the texture features of the chilled 

and non-chilled samples corresponding to higher values of PC1 for the early deep-chilled 

samples. The early deep chilled samples have higher gradients between meat and fat and thus 

show a weaker effect of the fermentation. For the non-chilled samples we first see a decrease 

and then an increase on day 42. The results for the first 3 weeks of fermentation indicate a 
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decrease in the difference between deep-chilled and non-chilled samples. The increase in PC1 

values for the non-chilled samples observed at day 42 might be due to the drying that takes 

place. 

3.3 Analysis of Statistical Color Scale 

The statistical meat color scale described in Section 2.5 was found as a feature for all 

samples. The CDA loadings for each of the 19 spectral bands are summarized in Figure 5. 

The CDA scores measures the difference between the longer wavelengths, red (645 - 660 nm) 

and NIR (890 - 970 nm), which is consistent with a change in red meat color. 

Fig. 8 shows the CDA color scale values for recipe 1 at the defined radii. Average values for 

all observation days are shown. The signals are similar for the remaining three recipes. The 

plot shows a general increase in nCDA value with time, more pronounced near the rim of the 

salami. This corresponds to a darkening of the red part of the meat, also seen clearly at the 

rim. Furthermore, the separation between the meat color for the non-chilled and deep-chilled 

samples becomes more dominant at the center of the salami on the later days of observation. 

To explore the color co-variability of the salami samples we employed a PCA. The analysis 

showed that the first and second principal components (PC) explain 95.9% and 3.6% of the 

variance in the data respectively. The PC loadings in Figure 8 show that the first PC describes 

an average color across all radii. The second PC describes the contrast between the inner and 

outer part of the salami slices. 

The model describing PC1 is similar to [5], and again a reparameterization is performed to 

reach a model as in [7], letting a time shift explain a substantial part of the difference between 

deep-chilled and non-chilled samples. The fits of both models are seen in Fig. 9. The same 

approach was employed to find a model for PC2. The resulting model is dependent on the 

chilling factor for all terms, and the fit is also shown in Fig. 9. 

The residual standard deviations for the two models for PC1 are 1.36 and 2.23, i.e. within the 

same range so we may use the time-shifted model. The time shift parameter δ is estimated to 

-3.2, so the average color for deep-chilled samples is approximately three days ahead of the 

non-chilled. For PC2, the residual standard deviations are 0.11 and 0.56, i.e. five times larger 

for the time shifted model. In this case it is obviously not feasible to apply the latter model. 

This means that the contrast between the inner and outer part of the salamis are developing 

differently for deep-chilled and non-chilled samples although they show the same general 

trend with in increasing value for the first two weeks and then a decrease. 

3.4 CIELAB Color Analysis 

As described in Section 2.5.1 we also performed a statistical analysis of the CIELAB color 

components. We extracted the feature in the same manner as for the statistical meat color 

scale, and performed the same fitting to the models in [5] - [8]. This analysis showed that the 

individual color components, L*, a*, and b*, were influenced by the chilling of the samples. In 

particular the a* component was influenced by the chilling, which relates well with the fact 
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that it is the a* component that represent red color. But the statistical significant influence of 

the chilling may not represent a visual detectable difference. 

As mentioned earlier, the inner third of the salamis is often used for color judgement by a 

sensory panel. Let Lij
*(t) be the average L*-value for the inner third of the three salami slices 

measured from recipe j on day t. i = 0 corresponds to non-chilled and i = 1 to deep-chilled 

salamis. We assumed a two-way interaction model E(Lij
*(t)) = μ + ci + rj + dt + αij + βit + γjt, 

where μ is the general level, ci, rj and dt represented the effects of chilling, recipe, and day 

number (time), and the remaining parameters represent the two-way interaction terms. All 

parameters must satisfy the usual ANOVA constraints of summing to 0. The variables 

(skipping the subscripts) 

* * *
1 0( ) ( ), {1,2,3,4}, {2,3,9,14,21}.j jL L t L t j t      [9] 

thus represent the differences between the chilled and the non-chilled samples in the L* color 

component. Similar expressions were obtained for the other two components. The observed 

values for recipe 1 are presented in Table 1. The expected value of ΔL* is c1 − c0 + α1j − α0j + 

β1t − β0t. If there is no interaction between time and chilling, we get 

* * *
1 0 1 0 1 0( ) ( ( ) ( )) ,j j j jE L E L t L t c c        [10] 

i.e. for a fixed recipe, we have five random variables with the same mean value. We may 

therefore, using a t-test, investigate whether this mean can be assumed to be zero. Table 1 

presents the p-values for these tests for recipe 1 samples. 

The p-values showed a clear significance for the Δa* and Δb* values, and a border case for 

ΔL*. Thus we had a clear statistical difference between the color values. Table 1 also states 

the corresponding values of ΔEab
*. For all samples we got an average of approximately 2.1 

and the maximum value is 2.9. The latter results give reason to believe that the color 

difference between chilled and non-chilled samples will be hard to detect for a sensory panel, 

since the human threshold is approximately 2.5 (Larraín et al., 2008). Thus, we see that the 

deep- and non-chilled samples have a statistical significant color difference, but it is most 

likely not visually detectable. 

4 Conclusion 

It should be emphasized that the purpose of the present paper was not to compare and 

evaluate different data analytic principles in the analysis of multispectral images of food 

samples, but to establish an analysis pipeline modeling the properties of interest for the food 

scientist. E.g. there are numerous methods for describing image texture, and possibly some 

might be as good (or even better) than the one described here. The virtues of the methods 

chosen are that they all give a description of such detail that it is possible to draw useful 

inferences. 

Specifically, fermentation of deep-chilled and non-chilled salami was monitored by 

multispectral imaging. The basic features extracted from the multispectral images were 
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width, color, and visual texture. These features showed that the chilled and non-chilled 

samples do differentiate from each other. The individual analyses of the features showed 

statistical differences. In the case of the width of the salami it was possible to quantify the 

difference in days of fermentation to something between a half and a full day. The color 

difference as measured in either the artificial CDA color or CIELAB values also showed 

statistical differences. However, quantifying the color difference by the ΔEab
* showed a 

difference on the border of being visually detectable. A texture difference was also observed, 

but harder to relate to the sensory or physical parameter. 

For the entire measurement period the differences between the CIELAB color values for the 

deep-chilled and non-chilled samples were below what is normally considered to be the 

detection limit for human visual assessments. As regards such assessments it is thus possible 

to stall the fermentation of salamis by deep-chilling so that different stages in the 

fermentation process may be assessed by a sensory panel at the same time point. The 

differences between deep-chilled and non-chilled samples could however be detected by 

suitable statistical analyses. 
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Table 1 L*, a *, and b* differences for the inner third of recipe 1 samples. The t-test values 

relate to a paired t-test of the differences for each of the color components. Finally, the 

corresponding ΔEab
* values for the observation days are also expressed. 

 Day 2 Day 3 Day 9 Day 14 Day 21 p 
ΔL* -0.1240 0.7306 1.2825 1.4279 2.4140 0.0517 

Δa* -1.0667 -1.173 -1.5639 -1.5332 -0.7242 0.0016 

Δb* -0.8394 -0.9134 -1.8387 -2.0282 -0.9888 0.0064 
*
abE  1.3630 1.6176 2.7333 2.9160 2.7073  
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Figure 1 Fermentation process for one recipe of salami at day 2, 3, 9, 14, 21, and 42 after 

production (ordered from upper left to lower right). These images are obtained from 

multispectral images as false color composite based on three spectral bands (660 nm, 470 nm, 

435 nm). 

Figure 2 Flow diagram of the feature extraction from the multispectral images. 

Figure 3 Pseudo RGB image of a sample from day 14 with background and meat and fat 

segmentations. 

Figure 4 Gradient magnitude images at the five levels of the Gaussian Pyramid and the 

resulting concatenated histogram. 

Figure 5 From left right: CDA loadings for the statistical meat color scale. Each loading 

refers to a spectral band. nCDA meat color scale. The darker blue is fresh meat, whereas 

yellow and orange represent darker red, fermented meat. 

Figure 6 Width feature with non-linear fits. From left to right: Fit of polynomial, time-shifted 

parabolas, and exponential function. 

Figure 7 Left: PC loadings for the first three principal components of the concatenated 

histogram of texture features. Middle and right: PC1 and corresponding fits. 

Figure 8 Left: Color distribution through a salami of recipe 1 as expressed in terms of the 

statistical meat color scale found by CDA. The value increases with fermentation time. 

Middle: Correlation between r1 and r2, …, r31. Right: PC loadings. 

Figure 9 Top: Fit to PC1 and PC2 of statistical color scale. Bottom: Modified fit to PC1 and 

PC2 – two parabolas with a time shift. 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7



Figure 8



Figure 9


