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The redox chemistry of the N�nitrosamine complexes [IrCl5(RN(H)N=O)]
2–

 (R = benzyl or n�butyl) 

was studied in detail. One�electron oxidations at around 200 mV vs. ferrocene/ferrocenium were 

reversible in cyclic voltammograms. UV�vis spectroelectrochemistry reveals spectra characteristic 

of Ir
IV

 species but also partial decomposition of the oxidised species [Ir
IV

Cl5(RN(H)N=O)]
•‒ 

on this 

timescale (minutes). Detailed studies on chemically oxidised solutions of the parent Ir
III

 complexes 

gave evidence for paramagnetic Ir
IV

 from NMR spectra. Final products of the decomposition were 

the corresponding alcohols and presumably [Ir
III

Cl5(L)]
2– 

(L = N2, solvent, amine) complexes. 

Similar decomposition reactions of acidic DMSO solutions of [IrCl5(RN(H)N=O)]
2–

revealed that 

this combination produces the so�called “activated” DMSO (Me2S
+
�O

–
 or Me2S

+
�OE, with “E” 

being an electrophile) which oxidises the parent Ir
III

 complexes. Finally, with the very reactive 

purple Ir
IV

 compound (PPh4)[IrCl5(BnN(H)N=O)], the first primary N�nitrosamine coordinated to 

[Ir
IV

Cl5]
–
 was isolated and characterised by UV�vis absorption, FTIR, NMR spectroscopy, ultra�

high resolution electrospray mass spectrometry (UHR�ESI�MS) and iridium L3 X�ray absorption 

near�edge spectroscopy (XANES). 

 

 

1. Introduction 

 

In the last years we could show that the [Ir
III

Cl5(NO)]
‒
 scaffold provides an excellent opportunity to 

react the bound nitrosyl with substrates such as alkenes, thiolates and amines thus forming metal�

bound C�nitroso compounds,
1
 N�nitrosothiols,

2,3
 and N�nitrosamines.

4,5
 Several primary N�

nitrosamines (R
1
N(H)N=O) with R

1
 = p�toluidine, 2,2,2�trifluoroethylamine, benzylamine, n�

butylamine, cyclopropylamine, and the pseudoaromatic amine 9�octyladenine have thus been 

studied (Scheme 1).
6
 Primary N�nitrosamines are intrinsically unstable but, together with their 

tautomeric isomers, diazoic acids (R1N=N–OH), they are considered as important intermediates in 

the deamination of DNA bases
7
 and in the formation of diazonium salts,

8,9
 which stand for an 

important area of organic chemistry.
10 

We also found that these [IrCl5]
2–

 bound primary N�nitrosamines form diazoic acid derivatives 

which can cleave OH
–
, yielding diazonium complexes (Scheme 1).

5,11
 When attacked by 

nucleophiles (Nu) the dioazonium complexes readily cleave ROH and RNu forming N2 complexes. 

They can react with amines or solvent to give amino
5
 or solvent

11
 complexes. 

The electrochemistry of the parent complex [IrCl5(NO)]
‒
 revealing a reversible one�electron 

reduction at ‒0.33 V vs ferrocene/ferrocenium in n�PrCN at ‒60°C has been studied quite some 

time ago together with IR and EPR spectroelectrochemistry and quantum chemical DFT 

calculations.
12

 In contrast to this, the redox chemistry of the N�nitrosamine [IrCl5]
2–

 complexes has 
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not been investigated. When doing so on a selected couple of complexes [IrCl5(RN(H)N=O)]
2–

 with 

R = benzyl ([1]
2‒

) and n�butyl ([2]
2‒

), we found reversible oxidation processes indicative for a Ir
III/

 

Ir
IV

 couple and chemical follow�up reactions quite similar to the ones described for the reactions 

with nucleophiles (Scheme 1). 

 

 

Scheme 1 Formation of N�nitrosamine complexes and their reactivity towards nucleophiles. 

Adopted from ref. 5. 

 

In this contribution we will present results from an in depth study on these oxidation processes 

using cyclic voltammetry and spectroelectrochemistry applying electrochemical (electrolysis) and 

chemical oxidation methods. Furthermore, UV�vis absorption, NMR and EPR spectroscopy, ultra�

high resolution electrospray mass spectrometry (UHR�ESI�MS) and iridium L3 X�ray absorption 

near�edge spectroscopy (XANES) experiments have been carried out on isolated oxidised materials 

to probe for the oxidation state of the metal centre and the structures of the assumed Ir
IV 

species 

[IrCl5(RN(H)N=O)]
•‒

. 

 

 

2. Results and Discussion 

 

2.1 Syntheses and structures of [Ir
III

Cl5(RN(H)N=O)]
2–

 complexes (R = benzyl [1]
2‒

 or n*butyl 

[2]
2‒

) 

In order to have a broad arsenal of materials, the parent Ir
III

 complexes [IrCl5(RN(H)N=O)]
2–

 were 

synthesised and crystallised together with various cations such as PPh4
+
, K

+
,
 
and RNH3

+
 with R = 

benzyl (Bn) or n�butyl (Bu). The isolation of the mixed salts K(RNH3)[IrCl5(RN(H)N=O)] is a 

consequence of syntheses starting from K[IrCl5(NO)] and RNH2 (Eq. 1). The PPh4
+
 cations were 
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introduced for enhanced solubility in organic solvents such as acetonitrile (MeCN) and 

tetrahydrofurane (THF) for the compounds (PPh4)2[IrCl5(RN(H)N=O)]. For details on the synthesis 

and characterisation, see the Experimental. The molecular structures of [IrCl5(BnN(H)N=O)]
2‒

 and 

another analogue, [IrCl5(TfN(H)N=O)]
2‒

 (Tf = 2,2,2�trifluoroethyl), as determined by single X�ray 

diffraction and spectroscopy have been previously reported and seem to be independent of the 

counter ions.
5
 

                                (1) 

 

2.2 Electrochemical properties of the primary N*nitrosamine complexes [IrCl5(RN(H)N=O)]
2–

 

Cyclic voltammetry and UV�vis spectroelectrochemistry of [1]
2‒

 and [2]
2‒

 are shown in Fig. 1 and 

2. Both complexes display a one�electron reversible oxidation at E1/2 = 311 and 220 mV vs. 

ferrocene/ferrocenium, for [1]
2‒

 and [2]
2‒

, respectively, which we assign to an oxidation process 

Ir
III

/Ir
IV

. These values are comparable with the Ir
III

/Ir
IV

 couple observed in hexachloroiridates at 436 

mV
13

 (value recalculated for DMSO solution from ref. 14) and also are in the range observed in 

electrochemical studies of other Ir
III

 complexes containing the cyclometalating 
‒
Phpy (2�phen�2�ide�

pyridine) ligands and derivatives (70−910 mV),
15�18

 Ir
III

 bis�pyridine�2�sulfonamide complexes 

(400�550 mV),
19

 Ir
III

 corrolates (~200 mV),
20,21

 or the complex [Cp*Ir(NHC)Cl] (NHC
‒
 = 1�phen�2�

ide�3�diphenylimidazol�2�ylidene; Cp* = pentamethylcyclopentadienide; 200 mV).
18

 For Ir
III

 

pyridine�alkoxide complexes markedly higher values were reported (800–1000 mV).
17,22

 The 

oxidations of [1]
2‒

 and [2]
2‒

 occur reversibly on the timescale of the experiment. 

-600 -400 -200 0 200 400 600

E (mV) vs. ferrocene/ferrocenium

A

20 �A

-200 0 200 400 600

E (mV) vs. ferrocene/ferrocenium

5 �A

B

 

Fig. 1 Cyclic voltammetry of complexes K(NH3R)[IrCl5(RN(H)N=O)] in DMSO/nBu4NPF6 at 298 

K and at 100 mV/s. A: R= benzyl [1]
2‒

; B: R= n�butyl [2]
2‒

. 

 

The UV�vis spectroelectrochemical anodic oxidation of [1]
2‒

 and [2]
2‒

 (Fig. 2) shows dominating 

bands of the starting Ir
III

 complexes at about 240 and 335 nm. The bands at 240 nm have large 
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extinction coefficients and are probably due to ligand�based π–π* transitions. The rather intense 

long�wavelength absorptions with maxima at around 335 nm and tailing down to 470 nm can be 

assigned to ligand�to�metal charge�transfer absorptions (LMCT; RN(H)N=O or Cl
‒
 to Ir

III
) based on 

assignments of hexachloroiridates and hydroxyiridates.
23,24,25

 Probably they obscure the weak d�d 

bands occurring also in this spectral range.
24,25

 

Upon anodic oxidation, new long�wavelength absorption bands appear at 544 nm for both 

compounds and the bands at 335 nm are reduced in intensity (Fig. 2). At the same time, the 240 nm 

(π–π*) absorptions seem to gain intensity. Isosbestic points are found at 304 and 415 nm for the 

benzyl complex and at 308 and 432 nm for the butyl derivative. This is in line with a change in the 

colour of the solution from pale orange to dark purple. The new long�wavelength absorptions at 544 

nm are too intense to be considered as d�d transitions (Table S1 in the ESI†). Thus, we assign them 

to the above mentioned LMCT which is red�shifted upon oxidation in line with a stabilisation of the 

metal HOMO (highest occupied molecular orbital). This supports our assumption of a metal�based 

oxidation in the nitrosamine complexes [Ir
III/IV

Cl5(RN(H)N=O)]
2‒/‒

 and the spectral assignment is in 

line with related Ir
IV

 complexes.
22

 Similar strong LMCT (Cl
‒
 to Ir

IV
) absorptions in this spectral 

region have been also reported for [IrCl6]
2‒

 
23,24,25

 and [IrCl5(H2O)]
‒
 
24

 in line with our observations. 

 

 

Fig. 2 UV�vis absorption spectra recorded during anodic oxidation of [1]
2‒

 (A and B) and [2]
2‒

 (C 

and D) in DMSO/nBu4NPF6 at room temperature in an OTTLE cell (applied potential 0–800 mV). 
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Inset A and C: Parent complex in blue and product of the oxidation in black; inset B and D: 

oxidised complex in black and re�reduced complex in red. 

 

At the same time re�reduction after exhaustive oxidation did not completely yield the original 

spectra (Fig. 2 B and D). Thus, the oxidised species [Ir
IV

Cl5(RN(H)N=O)]
•‒ 

are not stable on the 

timescale of the UV�vis spectroelectrochemistry experiments which lies in the range of minutes. 

 

2.3 Chemical oxidation of the N*nitrosamine complexes [IrCl5(RN(H)N=O)]
2– 

* in situ 

spectroscopy 

In order to characterise the oxidised complexes [1]
•‒

 and [2]
•‒

 spectroscopically, the oxidation of 

[IrCl5(RN(H)N=O)]
2–

 [R = benzyl (Bn) or n�butyl (Bu)] was carried out using the chemical 

oxidants Magic Blue (N(C6H4Br�4)3)[SbCl6] (+0.70 V vs ferrocene/ferrocenium in CH2Cl2)
26,27

 and 

(NH4)2[Ce
IV

(NO3)6] (+1.21 V in H2O).
27,28

 The reactions were followed by UV�vis absorption, 

FTIR, and NMR spectroscopy as well as ultra�high resolution ESI�MS. Although both oxidants 

seemed to work as was concluded from the observed colour change from orange to purple (R = Bn) 

or brown�purple (R = Bu), the spectra obtained on reactions using Ce
IV

 were unequivocal, while 

oxidation using Magic Blue seemed to yield mixtures of species. 
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Fig. 3 Oxidation of K(BnNH3)[1] in DMSO�d
6
 using (NH4)2[Ce(NO3)6], followed by 

1
H NMR (500 

MHz) spectroscopy. A: starting complex. B: spectrum recorded immediately after addition. C: 

spectrum recorded after 10 minutes. D: spectrum recorded after 3 hours. NH4
+
 protons are indicated 

with *. 

 

In the NMR spectra of the benzyl derivative K(BnNH3)[1] when oxidised with (NH4)2[Ce(NO3)6] 

(Fig. 3), three signals in the range 4.5 to 5.5 represent the CH2 protons of three different benzyl 

species and we assign them to [1]
2‒

 (4.7 ppm), [1]
•‒ 

(5.3 ppm), and benzyl alcohol (4.5 ppm). The 

CH2 protons of the BnNH3
+
 cation are found at 4.1 ppm. Another interesting aspect is the 

broadening of the lines after adding the oxidant pointing to a paramagnetic character of the 

produced complex [1]
•–

, in line with the assumption of a Ir
IV

 d
5
 low�spin configured octahedral 

species [IrCl5(BnN(H)N=O)]
•–

. During the reaction, the signals are sharpened again indicative for a 

back�reduction to Ir
III

. Very similar observations were made on oxidation of solutions of 

K(BuNH3)[2], (PPh4)2[1] and (PPh4)2[2] in DMSO�d
6 

using (NH4)2[Ce
IV

(NO3)6] (Fig. S1 to S4 in 

the ESI†). In many of these experiments we also observed alongside with the alcohols the 

corresponding aldehydes benzaldehyde and propanal and even benzoic acid and butyric acid. 

 

 

Fig. 4 Ultra�high�resolution electrospray mass spectrometry experiments (UHR�ESI�MS) of the 

MeOH�solutions oxidised using (NH4)2[Ce
IV

(NO3)6] in the negative ion mode (TOP A+C, 

collected data at ‒60 °C; Bottom B+D, simulated isotopic pattern). Left (A+B): results obtained for 

[1]
•–

 for the ion M
•–

 = [Ir
IV

Cl5(BnN(H)N=O)]
•–

, m/z =505.8619 (calc. m/z = 505.8670); Right 

(C+D): results obtained for [2]
•–

 for the ion M
•–

 = [Ir
IV

Cl5(BuN(H)N=O)]
•–

, m/z = 471.8817 (calc. 

m/z = 471.8827). 
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Ultra�high�resolution low�temperature ESI�MS experiments on MeOH�solutions of (PPh4)2[1] and 

(PPh4)2[2], oxidised in vitro with (NH4)2[Ce
IV

(NO3)6], at �60  C showed the ions 

[Ir
IV

Cl5(BnN(H)N=O)]
•–

, with a m/z = 505.8619 (calc. m/z = 505.8670), and 

[Ir
IV

Cl5(BuN(H)N=O)]
•–

, with a m/z = 471.8817 (calc. m/z = 471.8827), respectively (Fig. 4). Thus, 

NMR spectroscopy and UHR�ESI�MS gave clear indication for the formation of [1]
•‒

 and [2]
•‒

, the 

first species in which primary N�nitrosamines coordinate to Ir
IV

. The half�life of the species can be 

estimated from NMR spectroscopy to about 1 h. 

The oxidised solutions were also investigated using X band EPR spectroscopy. Neither 

solutions at ambient temperature nor at 110 K or 4 K (glassy frozen) gave reasonable signals. We 

conclude from this that the paramagnetic [Ir
IV

Cl5(RN(H)N=O)]
•–

 species are EPR silent due to 

unfavourable relaxation behaviour. EPR of [IrCl6]
2–

 has been so far only measured using Ir
IV

 doped 

lattices, such as (A)2[PtCl6] with A = NH4
+
, Na

+
 or K

+
, while in bulk K2[IrCl6] efficient chlorine 

nuclear relaxation was reported.
29

 Thus, we assume the same is happening in [IrCl5(RN(H)N=O)]
•–

 

samples. This is in line with the observation that only extensive hydrolysis of K2IrCl6 and thus 

replacement of all Cl
‒
 ligands allows the observation of a weak EPR signal for such Ir

IV
 species.

23
 

In contrast to this, broad rhombic or axial EPR spectra of Ir
IV

 have been observed for complexes 

containing pyridine�alkoxide ligands,
22

 for the cationic Ir
IV

 complex [Cp*Ir(NHC)Cl]
+
 (NHC

‒
 = 1�

phen�2�ide�3�diphenylimidazol�2�ylidene),
18

 or for Ir
IV

 corrolates,
20,21

 in glassy frozen solutions at 

temperatures between 4 and 20 K. For the recently reported Ir
IV

�containing polyoxometalate 

[HIr
IV

W6O24]
7‒ 

a complex signal was recorded
 
at 110 K from a powder sample.

30
 

From all this we can conclude that the oxidised Ir
IV

 complexes [Ir
IV

Cl5(RN(H)N=O)]
•‒

 undergo 

decomposition reactions yielding products very much alike those observed previously from 

decomposition of nitrosamine complexes [IrCl5(RN(H)N=O)]
2– 

initiated by a loss of OH
‒
 as shown 

in Scheme 1,
5
 which were initially the diazonium complexes and finally amino, N2 and/or solvent 

complexes [Ir
III

Cl5(L)]
2‒

 together with the alcohols ROH. What is different, is the observation of 

oxidatively produced Ir
IV

 species by NMR and UV�vis and the oxidised products of ROH, 

aldehydes and carboxylic acids. As one probable mechanism we assume that the Ir
IV

 species 

[Ir
IV

Cl5(RN(H)N=O)]
•‒

 cleave the 
•
OH radical and we were able to trap this radical when oxidising 

(PPh4)2[1] in the presence of the spin trap PBN (N�tert.�butyl�α�phenylnitrone) using 

(NH4)2[Ce(NO3)6] (Fig. S4†). 
•
OH might also be the oxidant converting the alcohols to aldehydes 

and carboxylic acids. On the other hand the complexes [Ir
IV

Cl5(RN(H)N=O)]
•‒

 might also cleave 

hydroxide OH
‒
 yielding diazonium radical complexes [Ir

IV
Cl5(RNN)]

•
 which oxidise organic 

species and finally decompose to N2 and solvent complexes [Ir
III

Cl5(L)]
2‒

. 

 

2.4 Reaction of the nitrosamine complexes [IrCl5(RN(H)N=O)]
2–

 with acids 
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The decomposition of [IrCl5(RN(H)N=O)]
2–

 by acids was studied previously by our group to 

establish the reactivity patterns shown in Scheme 1.
4�6

 When the compounds 

K(RNH3)[IrCl5(RN(H)N=O)] were dissolved in DMSO in the presence of strong acids such as 

trifluoroacetic acid (TFA), HCl or HClO4, intermediate species could be detected by 
1
H NMR 

spectroscopy at 5.3 ppm and 4.3 ppm, identical to those observed for the oxidised benzyl [1]
•–

 and 

butyl [2]
•–

 derivatives, respectively (Fig. 5 and Fig. S5†). The same results were obtained 

independently of the counter ions K
+
 and RNH3

+
 or PPh4

+
 in the DMSO solution (Figs. S6 and 

S7†). However, for other solvents such as MeCN or MeOH only the previously observed 

decomposition products (Scheme 1), especially the alcohols, were observed (4.45 and 3.30 ppm for 

the α H respectively) and not the oxidised complexes (Fig S8†). 

From this it is clear that the combination of DMSO and strong acids has acted as oxidant of the 

nitrosamine complexes [Ir
III

Cl5(RN(H)N=O)]
2–

. This is not unexpected since the so�called 

“activated” DMSO (Me2S
+
�O

–
 or Me2S

+
�OE, with “E” being an electrophile) has been identified as 

oxidant in several studies showing that trifluoroacetic acid other acids are activating agents.
31,32

 

 

 

Fig. 5 Decomposition of K(BnNH3)[1] in DMSO�d
6
/TFA (trifluoroacetic acid) followed by 

1
H 

NMR (500 MHz) spectroscopy. A: starting complex. B: spectrum recorded immediately after 

addition of 1 equivalent of TFA. C: spectrum recorded after 60 min.; D: spectrum recorded after 96 
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h. The intermediate species at 5.28 ppm is assigned to [1]
•–

, benzyl alcohol is detected at 4.45 ppm, 

further yet un�identified decomposition products are marked in grey. 

 

2.5 Attempted isolation of the oxidised N*nitrosamine complexes [IrCl5(RN(H)N=O)]
–
 

Stoichiometric reactions of [IrCl5(RN(H)N=O)]
2–

 (R = benzyl [1]
2‒

 and n�butyl [2]
2‒

) with the 

chemical oxidants Magic Blue and (NH4)2[Ce(NO3)6] were performed in DMSO, MeOH, MeCN 

and water at different ratios and temperatures and for different counter ions. The desired product 

(PPh4)[IrCl5(BnN(H)N=O)] could be isolated as a purple material (details in the Experimental) for 

the reaction of (PPh4)2[IrCl5(BnN(H)N=O)] with (NH4)2[Ce(NO3)6] in MeOH at –30° C. The UV�

vis absorption spectrum of (PPh4)[1] dissolved in MeOH showed the characteristic band at ~540 nm 

(Fig. S9†). UHR�ESI�MS experiments performed on the same solution showed a signal at m/z 

505.8656 in agreement with the [Ir
IV

Cl5(BnN(H)N=O)]
•‒

 ion (calc. m/z = 505.8665). The same 

procedure applied for (PPh4)[2] led to a pale brown solid, probably the solvent�complex based on 

the 
1
H NMR and UHR�ESI�MS results and considering the higher instability of [2]

2–
 and [2]

•‒
 in 

comparison with [1]
2–

 and [1]
•‒

.
6,11

 

The obtained materials are unstable as can be seen in the rapid decomposition of the Ir
IV 

complex (PPh4)[1] (Figs. S10 and S11†). The NMR spectra reveal the same products as observed in 

the in situ measurements, especially large amounts of benzylic alcohol. X band EPR spectroscopy 

on the isolated material (PPh4)[1] gave no signals at 298, 110 and 4 K of the solid materials and for 

DMSO or THF solutions as observed for the experiments performed in solution described above. 

Unfavourable relaxation as pointed out above is obviously a problem in our systems. 

 

2.6 XANES measurements 

Previously it was shown that in the XANES (X�ray absorption near edge spectroscopy) of the Ir
III

 

complex [IrCl5(NO)]
‒
 at the Ir L3 edge the absorption energy is identical for the two different 

counter ions K
+
 and PPh4

+
 as expected, but the so�called white�line area is different 

33
 and it has 

also been shown that this white�line areas can be correlated to the oxidation state.
33�39
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Fig. 6 Normalised XANES spectra at the Ir L3 edge for the compounds (PPh4)2[1] and (PPh4)[1]. 

 

The area of the absorption peak in Fig. 6 at around 11.20 keV for (PPh4)[1] is notably larger than 

that for (PPh4)2[1], indicating the Ir atom has a higher density of unoccupied states with 5d 

character in line with the higher oxidation state of [1]
•‒

 compared with [1]
2‒

. The expected energy 

shift is not observable for the two different samples since the maximum resolution of the 

measurements of approximately 5 eV is too big for detecting the expected small difference of ca. 1 

eV. 

 

 

Fig. 7 Correlation of the Ir L3 white�line area with Ir oxidation states for (PPh4)2[1] and (PPh4)[1]. 

�: linear fit line for the reference compounds; �: experimental results for (PPh4)2[1] and 

(PPh4)[1]. 

 

In order to evaluate the oxidation states (PPh4)2[1] and (PPh4)[1] three reference compounds were 

studied: K2[Ir
IV

Cl6], K3[Ir
III

Cl6] and K[Ir
I
Cl2(CO)2] (Fig. S12†). When plotting the white�line area 

of all compounds versus their oxidation states (Fig. 7 and S13†) a quite perfect linear relationship is 
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obtained. Under this approximation, we can derive oxidation states of +3.3 (= III) and +4.1 (= IV), 

for (PPh4)2[1] and (PPh4)[1], respectively. 

 

 

3. Experimental 

 

3.1 Instrumentation 

1
H NMR spectra were recorded using a Bruker AM500 equipped with a broadband probe. 

1
H shifts 

are reported relative to DMSO�d
6
 (δ = 2.50 ppm). IR spectra were recorded using a Nicolet Avatar 

320 FTIR spectrometer with a Spectra Tech cell for KBr pellets. UV�vis absorption spectra were 

recorded using a Hewlett�Packard 8453 diode array spectrometer in 10 mm optical path quartz 

cuvettes. GC�mass spectra were recorded on a Shimadzu GC�17A gas chromatograph with a HP 

Ultra 2 capillary column attached to a GCMS�QP5000 mass spectrometer operating in the positive 

ion electronic impact ionisation mode at 70 eV. UHR�ESI�MS measurements were performed on a 

UHR�TOF Bruker Daltonik (Bremen, Germany) maXis plus, an ESI�qTOF�MS capable of 

resolution of at least 60,000 FWHM. Detection was in negative�ion mode and the source voltage 

was 3.2 kV. The flow rates were 250 µL per hour. The drying gas (N2) was held at ‒55 °C, the 

spray gas (N2) was held at ‒60 °C. The instrument was calibrated prior to every experiment via 

direct infusion of the Agilent ESI�TOF low concentration tuning mixture, which provided an m/z 

range of singly charged peaks up to 2700 Da in both ion modes. EPR spectra were recorded in the X 

band with a Bruker ELEXSYS500E equipped with a Bruker variable�temperature unit ER 4131VT 

(500 to 100 K) or an Oxford Instruments ESR900 He cryostat (80 to 4 K). The electrochemical 

measurements of [IrCl5(RN(H)N=O)]
2– 

were performed in DMSO for the K
+
 and ammonium salts 

and in DMSO, MeCN or MeOH for the PPh4
+
 derivatives. Glassy carbon was used as working�

electrode and platinum as reference� and counter electrode. nBu4NPF6 was used as the electrolyte in 

a concentration of 0.1 M and the redox pair ferrocene/ferrocenium was used as reference. 

Experiments in acidic solutions were also performed using an Ag wire coated with LiMnO4 as 

reference electrode and Ag as working and counter electrode. LiBF4 was employed as electrolyte. 

Data were processed using GPES 4.9 (General Electrochemical System Version 4.9). 

Spectroelectrochemical investigations (UV�vis) were performed at ambient temperature with an 

OTTLE cell.
40,41

 X�ray absorption spectra were measured in a Rigaku R�XAS Looper in�house 

spectrometer in transmission mode at INIFTA with a Mo target and a Si(400) monochromator 

crystal. An argon ionisation chamber was used to measure the incident radiation and a solid state 

detector to measure the transmitted intensity. The energy calibration at the Pt L3 edge (11564 eV) 

was done using a metallic Pt foil, which is very close to the Ir L3 edge (11215 eV). The XANES 
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spectra were extracted from the measured absorption spectra by standard methods using the 

ATHENA software which is part of the IFFEFIT package.
42

 

 

3.2 Materials and procedures. 

Unless otherwise noted, all manipulations were performed with exclusion of oxygen and moisture 

using standard Schlenk procedures and high�vacuum techniques or a MBraun labmaster 130 dry 

box. Acetonitrile (MeCN) was purchased from J. T. Baker and distilled from CaH2; diethyl ether 

was purchased from Cicarelli and distilled from Na�benzophenone; anhydrous DMSO was 

purchased from Aldrich and used without further purification; anhydrous MeOH was purchased 

from Merck and purified by distillation. Benzylamine, PPh4Br, K2[IrCl6], K3[IrCl6], deuterated 

solvents and acids were purchased from Sigma�Aldrich and used as received. n�butylamine was 

purchased from Riedel�de Haën and used as received. K[IrCl5(NO)] was purchased from Strem and 

purified by recrystallisation from dry MeCN. K[Ir
I
Cl2(CO)2] was synthesised according to ref. 43. 

 

Synthesis of [IrCl5(RN(H)N=O)]
2–

 (R = Bn or Bu). Nitrosamines K(NH3R)[1], K(NH3R)[2], 

(PPh4)2[1] and (PPh4)2[2] were prepared according to ref. 5 and the NMR and MS data agree with 

those reported there. (PPh4)2[IrCl5(N�nitrosobutylamine)], (PPh4)2[2], is reported in this work for 

the first time. Yield: 98%, orange solid. Anal. calcd. for C52H50Cl5IrN2OP2 (1150.40): C 54.29; H 

4.38; N 2.44; found: C 54.27; H 4.39; N 2.46(%). 
1
H NMR (DMSO�d

6
, ppm): δ = 12.65 (broad s, 

0.9H, NH), 8.01–7.92 (m, 8H, Ph4P
+
), 7.88–7.68 (m, 32H, Ph4P

+
), 3.46 (t, 2H, NHCH2), 1.45 (m, 

2H, CH2), 1.33 (m, 2H, CH2), 0.85 (t, J = 7.3 Hz, 3H, CH3). 

 

Chemical oxidation of the N*nitrosamine complexes [IrCl5(RN(H)N=O)]
2– 

* in situ 

spectroscopy 

1
H NMR, FTIR, UV�vis and UHR�ESI�MS experiments were performed dissolving about 5�10 mg 

of the starting nitrosamine complexes [1]
2‒

 (benzyl) or [2]
2‒

 (n�butyl) in DMSO or MeOH 

(deuterated for NMR) and adding 1 equivalent of Magic Blue [N(C6H4Br�4)3][SbCl6], +0.70 V vs 

ferrocene/ferrocenium in CH2Cl2)
25,26

 or (NH4)2[Ce
IV

(NO3)6] (+1.21 V in H2O).
26,27

 In some cases 

these solutions were quenched with H2O and then extracted using diethyl ether or CHCl3 for GC�

MS experiments. In both cases the corresponding alcohols were the major products alongside with 

small amounts of the aldehydes and carboxylic esters. 

 

Acid induced decomposition reactions in DMSO solution (oxidation with activated DMSO). 

1
H NMR experiments were performed dissolving about 5�10 mg of the starting nitrosamine 

complexes [1]
2‒

 (benzyl) or [2]
2‒

 (n�butyl) in DMSO�d
6
 and adding 1 equivalent of CF3COOH. 

Page 13 of 20 Dalton Transactions

D
al

to
n

Tr
an

sa
ct

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
5 

Ju
ly

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f S
ou

th
 D

ak
ot

a 
on

 7
/3

1/
20

18
 1

1:
49

:5
8 

A
M

. 

View Article Online
DOI: 10.1039/C8DT02549E

http://dx.doi.org/10.1039/c8dt02549e


14 

 

NMR spectra recorded immediately after the reaction with the acid showed a signal at 5.3 ppm and 

4.3 ppm for the benzyl and butyl respectively (vs. 4.75 ppm and 3.57 ppm for the corresponding 

oxidised nitrosamine complexes [1]
•‒

 and [2]
•‒

. The further evolution of the reaction was then 

followed by 
1
H NMR spectra recorded at different times. GC�MS experiments were carried out on 

samples obtained from diethyl ether or CHCl3 extraction of H2O quenched reaction solutions. In 

both cases the corresponding alcohols were the major products alongside with small amounts of the 

aldehydes and carboxylic esters were also identified. The same reaction with other acids like HCl 

and HClO4 showed similar performance. The same procedure using MeOH�d
4
 or MeCN�d

3
 as 

solvents gave to spectral indication for the oxidised nitrosamine complexes [1]
•‒

 and [2]
•‒ 

but finally 

yielded the same decomposition products. 

 

Synthesis of the oxidised complex (PPh4)[IrCl5(BnN(H)N=O)]. 30 mg of (PPh4)2[1] was 

dissolved in MeOH (0.7 mL) under an argon atmosphere at –30° (N2/EtOH slush bath) and then a 

MeOH solution (0.3 mL) of (NH4)2[Ce(NO3)6] (30 mg) was added. The reaction solution turned 

deep purple and a fine purple solid precipitated immediately after the oxidant addition. A few 

seconds later, a cold solution of ethyl ether:MeOH in a 3:1 ratio was added at low temperature to 

enhance the precipitation of the solid product. The supernatant was carefully removed and the solid 

was dried under N2 current and vacuum. The solid product was characterised by FTIR (pellets). 

Unfortunately so far, crystallisation only yielded decomposition products or low quality crystalline 

material. The solid was also dissolved in DMSO or MeOH and characterised by UV�vis, FTIR, 

NMR, electrochemistry experiments and UHR�ESI�MS showing analogous results to those obtained 

in the study of the in situ oxidation reaction in solution. 
1
H NMR (DMSO�d

6
, ppm): δ = 8.01–7.92 

(m, Ph4P
+
), 7.88–7.68 (m, Ph4P

+
), 7.45 (m, Ph), 5.30 (s, NHCH2Ph. 

 

 

Conclusions 

 

The previously studied N�nitrosamine complexes [IrCl5(RN(H)N=O)]
2–

 (R = benzyl [1]
2‒

 or n�butyl 

[2]
2‒

) have been submitted to a detailed study of their redox chemistry. Reversible one�electron 

oxidations at around 200 mV vs. ferrocene/ferrocenium were observed in cyclic voltammograms on 

a timescale of a few seconds. UV�vis spectroelectrochemistry reveals bands characteristic of Ir
IV

 

species. At the same time, re�reduction after exhaustive oxidation did not completely yield the 

original spectra and the oxidised species [Ir
IV

Cl5(RN(H)N=O)]
•‒ 

are not stable on the timescale of 

the UV�vis spectroelectrochemistry experiments which lies in the range of minutes. For a deeper 

insight, solutions of the parent Ir
III

 complexes were oxidised chemically using Magic Blue or 
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(NH4)2[Ce(NO3)6] and in situ NMR and EPR spectroscopy and UHR�ESI�MS was carried out. The 

oxidation from the diamagnetic Ir
III

 starting materials to paramagnetic Ir
IV

 could be monitored 

through line broadening of NMR spectra but failed to give EPR spectra. In the course of the 

following decomposition reactions (half�life ~1 h), the NMR spectra regained the initial high 

resolution and narrow lines indicating a back�reduction to Ir
III

 in line with UV�vis absorption 

spectra. Furthermore, the corresponding alcohols benzyl and butyl alcohol together with smaller 

amounts of the aldehydes and carboxylic acids were detected by NMR and MS. Remarkably, the 

acid�induced decomposition of nitrosamine complexes [IrCl5(RN(H)N=O)]
2– 

initiated by a loss of 

OH
‒
 as shown in Scheme 1 yields very similar final products. The oxidatively produced Ir

IV
 species 

decompose yielding first diazonium complexes and finally amino, N2 or solvent complexes 

[IrCl5(L)]
2‒

 together with the ROH. The only difference is the appearance of oxidised complexes 

[1]
•‒

 and [2]
•‒

and the oxidised products of ROH, the aldehydes and carboxylic acids. As a 

consequence, we also followed decomposition reactions of the complexes [IrCl5(RN(H)N=O)]
2–

 

through acids by NMR spectroscopy and found that DMSO solutions of the species in the presence 

of strong acids such as trifluoroacetic acid (TFA), HCl or HClO4 showed very similar 

decomposition products this time including strong evidence for the intermediate Ir
IV

 species. It 

became clear that the combination of DMSO and acid produces the so�called “activated” DMSO 

(Me2S
+
�O

–
 or Me2S

+
�OE, with “E” being an electrophile) which is able to oxidise the parent Ir

III
 

complexes. 

As one probable mechanism for the oxidatively�induced decomposition we assume that the Ir
IV

 

species [Ir
IV

Cl5(RN(H)N=O)]
•‒

 cleave the 
•
OH radical and were able to trap this when oxidising 

(PPh4)2[1] in the presence of the spin trap PBN (N�tert.�butyl�α�phenylnitrone) using 

(NH4)2[Ce(NO3)6]. 

Finally, chemical oxidation using (NH4)2[Ce(NO3)6] at low temperatures allowed to prepare the 

very reactive Ir
IV

 compound (PPh4)[IrCl5(BnN(H)N=O)] as a purple material, representing the first 

primary N�nitrosamines coordinated to [Ir
IV

Cl5]
–
. Further trials especially on the butyl derivative 

failed. The compound was characterised by UV�vis absorption, FTIR, NMR spectroscopy, UHR�

ESI�MS and Ir EXAFS. UV�vis absorption, FTIR, NMR, and MS spectra are fully in line with the 

results from our in situ experiments. Again no EPR signals were observed which we ascribe to 

unfavourable relaxation. Using Ir
III

 and Ir
IV

 reference compounds, correlation of the Ir L3 white�line 

area of XANES spectra with Ir oxidation states allowed an assignment of oxidation states of the Ir 

metal centre of III and IV for (PPh4)2[1] and (PPh4)[1], respectively. 
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Short text 

The one electron oxidation of the N�nitrosamine complexes [Ir
III

Cl5(RN(H)N=O)]
2–

 (R = benzyl or 

n�butyl) was studied in detail and the reactive purple Ir
IV

 compound (PPh4)[IrCl5(BnN(H)N=O)] 

was isolated. 
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