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Compressing Networks with Super 
Nodes
Natalie Stanley1, Roland Kwitt2, Marc Niethammer3 & Peter J. Mucha4

Community detection is a commonly used technique for identifying groups in a network based on 
similarities in connectivity patterns. To facilitate community detection in large networks, we recast 
the network as a smaller network of ‘super nodes’, where each super node comprises one or more 
nodes of the original network. We can then use this super node representation as the input into 
standard community detection algorithms. To define the seeds, or centers, of our super nodes, we 
apply the ‘CoreHD’ ranking, a technique applied in network dismantling and decycling problems. We 
test our approach through the analysis of two common methods for community detection: modularity 
maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic 
block model. Our results highlight that applying community detection to the compressed network of 
super nodes is significantly faster while successfully producing partitions that are more aligned with 
the local network connectivity and more stable across multiple (stochastic) runs within and between 
community detection algorithms, yet still overlap well with the results obtained using the full network.

Networks appear across disciplines as natural data structures for modeling relational definitions between entities, 
such as regulatory interactions between genes and proteins, and social connections between people. In practice, 
most networks are large and have intricate substructures that can be interrogated for further insights about the 
underlying data. A common practice for extracting subgraphs of interest is community detection1–3, which aims 
to partition network nodes into groups based on the group-level connectivity patterns. For example, assortative 
communities are typically defined through some measure of a greater weight of within-group edges compared to 
those between groups. Communities can be identified through various optimization problems, including likeli-
hood maximization4–6 and quality function optimization7–9, or from spectral properties of associated matrices10. 
In this paper, we seek to explore whether a compressed, smaller version of the network can be used as input to 
community detection algorithms and produce a partition of nodes in the network that closely resembles the result 
that would have been obtained using the full network.

Much of our motivation for this network pre-processing step for community detection is inspired by the 
image analysis literature. The identification of communities in networks is in some ways similar to multi-label 
image segmentation, which aims to partition a grid of pixels into contiguous regions corresponding to objects 
in the image. In this sense, each segmented region can be viewed as a community11. To speed up segmentation 
for large images, a popular approach is to avoid computing segmentations at the pixel level and instead reformu-
late the segmentation problem based on larger-scale image primitives that are likely part of the same partition. 
Specifically, this can be accomplished by super pixels that aggregate pixels together in a way that faithfully adheres 
to image boundaries, maintaining or improving segmentation accuracy12. The SLIC super pixel method12 chooses 
seed pixels across the image’s pixel grid to serve as the super pixel centers and then iteratively grows out and rec-
omputes based on aggregation with neighboring pixels with similar visual features.

When defining super pixels, various authors have typically based the quality of their super pixel representation 
of the original image on two criteria. First, they seek to minimize under segmentation error13, which quantifies the 
extent to which the super pixels bleed across original boundaries in the image. Second, they consider the correct-
ness of the segmentation when applied to the super pixel representation of the image in terms of what would have 
been obtained using all pixels individually. For the super node network analog, we seek to define super nodes that 
also minimize under segmentation error and produce communities with high similarity to the result obtained 
using the full network.

1Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, North Carolina, 
USA. 2Department of Computer Science, University of Salzburg, Salzburg, Austria. 3Department of Computer 
Science, University of North Carolina at Chapel Hill, North Carolina, USA. 4Carolina Center for Interdisciplinary 
Applied Mathematics, University of North Carolina at Chapel Hill, North Carolina, USA. Correspondence and requests 
for materials should be addressed to N.S. (email: stanleyn@stanford.edu)

Received: 9 February 2018

Accepted: 3 July 2018

Published: xx xx xxxx

OPEN

mailto:stanleyn@stanford.edu


www.nature.com/scientificreports/

2SCIeNtIfIC REPOrTS |  (2018) 8:10892  | DOI:10.1038/s41598-018-29174-3

Problem Formulation
For a network with N nodes that we will split into K communities, we seek to find a representation of the network 
with S super nodes optimizing the following two quantities. First, given the set s = {s1, s2, … sS} of S super nodes 
and K communities, k = {k1, k2, … kK} identified with the full network, we wish to minimize the under segmen-
tation error,
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where |⋅| represents the count or number of nodes in the indicated set.
We let zFull and zSN denote the node-to-community assignments for the full network and super node net-

work representations, respectively. To compute the similarity between zFull and zSN, we use Normalized Mutual 
Information (NMI)14. That is, for partitions zFull and zSN with p and q communities, respectively, with N the R × C 
contingency table matrix where Nij gives the count of the number of shared nodes in community i in zFull and 
community j in zSN, the NMI between the two partitions is
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Using Super Nodes In Community Detection
While there are a variety of approaches to identify communities, in this paper we specifically examine how the 
compressed version of a network can be used in modularity maximization and likelihood maximization. We 
denote the network adjacency matrix by A, where aij encodes the edge between nodes i and j. To maximize mod-
ularity in a network with N nodes, one seeks to find the node-to-community assignment vector z = [z1, z2, … zN] 
that maximizes modularity, Q, defined by
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where aij are the adjacency matrix elements encoding presence (and possibly weight) of a possible edge between 
nodes i and j, = ∑d ai j ij gives the strength of node i, δ(zi, zj) = 1 if nodes i and j have the same community assign-
ment and 0 otherwise, M denotes the number of edges and γ is the resolution parameter controlling community 
sizes. The Louvain algorithm7 is a state-of-the-art heuristic for modularity maximization in terms of computa-
tional complexity and efficiency. It is an agglomerative method that begins with each node in its own community 
and merges together nodes and groups of nodes in each agglomeration step to best increase modularity at each 
level of agglomeration.

An alternative, statistical approach to identify community structure can be obtained through likelihood max-
imization by fitting a stochastic block model (SBM). Such models assume that the connectivity patterns between 
the N nodes in a network with K communities can be modeled according to their community memberships 
through a probability matrix π, where πkl affects the edge connection probability between two nodes in commu-
nities k and l. Assuming no corrections due to node degrees (degree-corrected versions also exist15), one seeks a 
partition, z, which maximizes,
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where δ(zi = k, zj = l) is 1 if zi = k and zj = l, and 0 otherwise. One can maximize this objective with the expecta-
tion maximization (EM) algorithm, belief propagation, and efficiently with an iterative approach which, similar 
to Louvain, agglomerates blocks of nodes at each iteration6. Specifically, at each iteration a Metropolis-Hastings 
accept-reject sampling approach is used to compute a probability of merging blocks based on how the merge 
affects the likelihood.

Limitations of Community Detection
These agglomerative heuristics for both modularity and likelihood maximization simplify a computationally 
challenging task but can still be time consuming for large networks and often give rise to large variability in the 
partitions returned across multiple runs of the algorithms. We seek to explore how a compressed network rep-
resentation can improve these issues.

Motivated by super pixels, we wish to define seed nodes in networks that can be used as a starting point to 
grow out ‘super nodes’ to define a new, smaller network upon which we apply standard community detection algo-
rithms. Creating a direct analog of super pixels in networks is challenging because the inherent geometry of a net-
work can be quite different from the grid layout of an image (where simple neighborhood structures such as 4- or 
8-neighborhoods are typically used), and we need to ensure seeds are well distributed across the network. Further, 
while super pixels are largely constrained by the structure of the pixel grid (i.e. proximity between pixel pairs mat-
ter), their definition also incorporates extra image features to refine members of a super pixel set, whereas in net-
work community detection we typically only have the edges of the network to work with. Finally, the performance 
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of a super pixel representation of an image can be objectively validated from the quality of the corresponding 
segmentation result, with reference to human-specified objects in images; in contrast, community detection is 
typically an unsupervised, exploratory data analysis technique with limited available notions of ‘ground truth’16–18. 
As such, we must develop measures that can be used to validate the quality of the super node representation.

Related Work
Our objective to define a smaller network of super nodes is a form of network compression. Several references 
have explored useful ways to compress networks19–24, with Yang et al.20 and Peng et al.22 using graph compres-
sion in the context of community detection. A review of network compression and summarization techniques 
is given in ref.25. These compression approaches can either be classified as network pre-processing or network size 
reduction. Under these definitions, pre-processing refers to a method that uses all of the nodes to pre-partition 
the network or agglomerate nodes to form a smaller network of pre-agglomerated nodes or’super nodes’. Creating 
a super node representation of the network can assist in visualization, gives control over how many nodes to 
split the network into, and allows for the input of a pre-processed network into standard network analysis tools. 
Alternatively, in network size reduction approaches, nodes are systematically removed and further analysis is 
performed on a smaller subnetwork. Such an approach may be useful if one has prior knowledge of unimportant 
or redundant nodes. Two network pre-processing methods that define super nodes are explored by Yang et al.20 
and Lisewski et al.19; but these approaches differ from our proposal in that they seek to define super nodes along 
with additional side information about relationships between node pairs. First, Lisewski et al.19, describes ‘super 
genomic network compression’ to reduce the number of edges in a large protein interaction network. To do this, 
the authors identify ‘clusters of orthologous groups’ of proteins, or proteins that give rise to similar functions in 
different species and originated from a common ancestor. Members of an orthologous group are connected as a 
star network, with the center node as one member of the orthologous group. Furthermore, edges between orthol-
ogous groups are replaced by a single weighted link reflecting the pairwise group evolutionary similarity. Next, 
Yang et al.20 define super nodes by specifying ‘must link’ and ‘cannot link’ constraints between pairs of nodes, 
agglomerating as many nodes as possible sharing must link constraints while being cautious about agglomerating 
nodes that cannot link. Finally, Slashburn introduced by Lim et al.23 is another pre-processing approach for net-
work compression that seeks to identify a permutation or ordering of the nodes, such that the adjacency matrix is 
pre-processed to have sets of clustered edges. To accomplish this task, hubs are removed iteratively and nodes are 
re-ordered so that high degree nodes appear first in the ultimate ordering of nodes.

Alternatively, approaches that perform network compression through network size reduction were presented in 
three works21,22,24. Gilbert et al., introduce the ‘KeepAll’ method21, which seeks to prioritize a set of nodes accord-
ing to their importance in the network and retain only the smallest set of additional nodes required for the induced 
subgraph of prioritized nodes to be connected. Results in this paper highlight the method’s ability to remove 
redundant and noisy nodes that allow for clearer analysis of the original set of prioritized nodes. Peng et al.22  
extract a smaller network through a k-core decomposition, and perform community detection on the subnet-
work. While we also seek to perform community detection on a smaller version of the network, we seek to do this 
in the network pre-processing manner so that all nodes are effectively included as the input to the community 
detection algorithm, with flexibility to choose the number of super nodes or size to represent the network with. 
Given that the number of nodes in the k-core of a network decreases dramatically with an increasing k, there is 
not much flexibility in the scale or size of the network representation. Finally, Liu et al. also use a k-core based 
approach to decompose the network in a different manner. The authors define CONDENSE24, an information 
theoretic based method to reduce a large network into a set of representative substructures. In particular, induced 
subgraphs resulting from the k-core based clustering technique are each treated as representative substructures.

Defining Super Nodes
To define the super node representation of an unweighted N-node network, we first select S N  seed nodes 
through a 2-core decomposition (discussed further in Methods). We then agglomerate the remaining N − S nodes 
around the seeds to create super nodes. Finally, we specify the network between these super nodes. Community 
detection can then be applied to the S-node network representation. Figure 1 visualizes this approach, with details 
provided in the Methods.

The aims of this work are twofold: First, we seek to develop an effective way to define a super node representa-
tion of a network that can then be used in standard community detection algorithms, such that the representation 
minimizes our defined under segmentation error and maximizes NMI with the partition that would have been 
obtained using the full network. Second, we wish to highlight several benefits of using such a compressed rep-
resentation of the network in community detection tasks. In particular, we show that a super node representation 
of the network accomplishes the following.

	 1.	 Decreased runtime for community detection: Even though recently developed heuristics for maximiz-
ing modularity7 and fitting SBMs6 are highly efficient relative to previous approaches for performing the 
same computational optimizations, these methods can still be time consuming for large networks. We 
aim to reduce runtime for large networks, moving most of the computational cost in practice from tasks 
scaling with the size of the network to alternatives scaling with the (much smaller) size of the super node 
representation.

	 2.	 Decreased stochastic variability of community detection algorithm output: In large networks, there is 
often significant variability across multiple runs of the same algorithm (employing computational heu-
ristics to solve NP-Complete optimizations), as well as differences between various community detection 
algorithms. We expect applying community detection to a well-chosen super node representation to 
decrease the observed variability.
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	 3.	 High local agreement: In defining super nodes, we inherently assume that the identified communities 
should agree with the local network connectivity in that members of a neighborhood should be more likely 
to have the same community assignment, provided that the super nodes were constructed to minimize 
aggregation across community boundaries.

	 4.	 Consistent with communities found using the full network: Despite the differences in line with the 
above features, the identified community structure should still be relatively similar to the distributions of 
results that would have been obtained through applying community detection to the full network.

Results
To demonstrate the effectiveness of super nodes, we performed several experiments to analyze the runtime, par-
tition variability, alignment of communities with local network connectivity, and alignment of super node rep-
resentation and full network communities. We considered 9 unweighted network data sets (see Table 1) from 
the Stanford Network Analysis Project database26 (Enron, Amazon, Dblp, Email, BrightKite, Stanford, Notre 
Dame) and Newman’s collection27 (As22, CMatter). We treat all networks as undirected. Note that some of these 
networks are large subgraphs extracted from the original networks. In particular, these subgraphs are defined by 
the union of all nodes of degree ≥2, their neighbors, and next nearest neighbors. We use the Louvain algorithm 
(https://github.com/vtraag/louvain-igraph) for modularity maximization7 and the stochastic block model (SBM) 
inference (https://graph-tool.skewed.de) described in ref.6. Since the super node representation ultimately pro-
duces a weighted network, where the edge weights are counts computed based on the original network, both of 
these community detection algorithms are able to accommodate these kinds of edge weights.

Because we consider a variety of comparisons between partitions under multiple community detection meth-
ods and network representations, we provide a schematic in Fig. 2 of the performed comparisons in subsequent 
figures. In these comparisons, we use normalized mutual information (NMI) to quantify the similarity between 
a pair of partitions. In general, there are four possible combinations of community detection method/network 
representation that can be applied to identify communities. First, there are two choices of community detection 
algorithms, Louvain algorithm or stochastic block model fitting. There are also two choices for network rep-
resentation, which is to use either the full network or super node network representation. In Fig. 2, we first visual-
ize the community detection algorithm and network representation combinations with different types of symbols 
and colors. Each symbol is intended to represent a community detection produced partition of the network 

Figure 1.  Defining super nodes. To define the super node representation of a network, we select S seeds and 
agglomerate local regions around them to create super nodes. This then leads to a new network with weighted 
edges between the S super nodes upon which community detection can be more efficiently applied.

Dataset (*Indicates subgraphs) #Nodes #Edges

CMatter* (Condensed matter 2003 collab.) 17,816 83,337

As22* (Internet) 22,801 48,270

Enron* 32,374 178,195

BrightKite (loc-BrightKite) 58,228 214,078

Amazon* (com-Amazon) 77,463 209,887

Dblp* (com-DBLP) 150,801 639,330

Email (email-EuAll) 265,214 420,045

Stanford (web-Stanford) 281,903 2,312,497

Notre Dame (web-Notre Dame) 325,729 1,497,134

Table 1.  Network data characteristics.

https://github.com/vtraag/louvain-igraph
https://graph-tool.skewed.de
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under a particular method/network representation. For example, pink squares are partitions obtained under 
the Louvain algorithm. Blue circles symbolize partitions according to the stochastic block model. The network 
representations used, full network or super node representation, are denoted by filled and hollow shapes, respec-
tively. We assume that under each network/method combination, we can generate multiple partitions that will 
be somewhat different from each other. Amongst all partitions, we perform our analyses on all pairs of network 
partitions that satisfy the network/method combination specified by each of the eight comparisons represented in 
Fig. 2. Comparisons between pairs of networks (shown in brackets in the Figure) fall into one of three types. The 
first partition comparison we consider is shown in Fig. 2A, and seeks to quantify the similarity between a set of 
partitions generated with different network representations under the same community detection algorithm. The 
comparison computes NMI(zFull, zSN). For example, we consider the pairwise similarity between the full network 
and super node representations with the stochastic block model. This comparison helps to understand how well 
the super node representation yields the node-to-community assignments obtained using the full network. Next, 
we explore the inherent variability of community detection algorithms, which seems to especially arise among 
partitions of a large network. Figure 2B considers pairs of partitions under the same network representation and 
community detection algorithm. For example, we run the Louvain algorithm on the super node representation 
of the network multiple times and compare all pairs of partitions. Finally, in Fig. 2C, we consider pairs of parti-
tions generated under the same network representation but with different methods. In one example, we compare 
partitions of the full network representation, where one partition used the Louvain algorithm and the other is 
obtained by fitting an SBM. Even though these methods are different by design, we want to measure the extent to 
which they capture common structures.

Objectively Comparing Partitions on Possibly Different Scales.  A challenge in directly comparing 
the community partitions on the full and super node network representations is the difference in scales between 
the partitions. For example, using the full network typically produces significantly more communities than under 
the super node representation. In an attempt to compare community partitions with similar size distributions in 
the subsequent experiments, we can choose algorithm parameters to adapt the scales of the partitions obtained 
from the Louvain algorithm and SBM fitting. Conceptually, this is achieved by using the super node representa-
tion of the network to choose a comparable parameter to apply during the community detection task on the full 
network.

In community detection with the Louvain algorithm, we identified comparable resolution parameters (con-
trolling community size) to apply to the full network that produce a size distribution agreeing as much as possible 
with the community partition in the super node network. We compute experimental results using both the default 
resolution parameter and the ‘matched’ parameter. While the default resolution parameter is γ = 1, in our analyses 
we computed partitions of the full network using several different γ ∈ . .[0 05, 2 5]. To choose the matched resolu-
tion parameter on the full network, we first find the community partition using the super node representation. For 
each partition, we then order nodes based on the sizes of the communities to which they belong. With this 
approach, all nodes from the same community are at the same position in the ordering. For each partition of the 
full network (at different resolution parameters), we then consider the similarity of this ranking with that from the 
super node communities, measuring this similarity by Kendall’s tau correlation. We identify the resolution param-
eter producing the highest Kendall’s tau correlation, referring to this resolution parameter as the ‘matched param-
eter’ in the remainder of the text, while we refer to the standard γ = 1 as the ‘default’ resolution parameter.

Figure 2.  Schematic of possible partition comparisons. We outline the types of possible comparisons between 
partitions generated according to various combinations of network representation and community detection 
method. According to a particular comparison rule, we compute normalized mutual information (NMI) 
between all pairs of networks satisfying the comparison description. The unique symbols in the schematic 
correspond to a community detection partition of the network obtained according to a particular algorithm 
and network representation combination. Partitions obtained with the Louvain algorithm are denoted by pink 
squares, while partitions with an SBM are shown as blue circles. Network representation is coded by solid 
symbols for the full network and hollow symbols for the super node network. In (A–C) we outline the types of 
comparisons we perform in subsequent figures. (A) To compare the usefulness of the super node representation 
in identifying communities retrieved using the full network, we compare pairs of networks with different 
representations under the same community detection algorithm. (B) Due to the stochastic nature of both the 
Louvain algorithm and SBM fitting, this comparison seeks to quantify partitions generated under the same 
network representation and method. (C) Finally, we consider pairs of partitions generated under the same 
network representation and different community detection algorithms.
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In fitting SBMs, we chose to fit a model with the same number of blocks that was found in the super node 
representation using the standard optimization and model selection strategies discussed in ref.6. We refer to the 
‘matched’ version as that using the number of blocks identified by the model selection on the super node rep-
resentation, while the ‘default’ result is obtained using the model selection strategy on the full network. In subse-
quent experiments, we compare both the ‘matched’ and ‘default’ versions to ensure our results are not artificially 
influenced by the scale of the community sizes.

Experiments.  First we measure the quality of the super node representation in terms of NMI and under 
segmentation error that were defined in equations 1 and 2. In Fig. 3, we vary the number of super nodes and 
examine the normalized mutual information (A.) (equation 2) and log under segmentation error (B.) (equation 1) 
in each of the 9 networks. The curves represent the mean NMI (A.) and mean under segmentation error (B.) over 
5 super node representations, with the shaded area denoting standard deviation. Varying the number of super 
nodes between 100 and 600, the results generally indicate that as the number of super nodes increase, the network 
has 1) lower under segmentation error and 2) higher NMI (i.e. similarity) with the partition obtained using the 
full network. Each curve and line type in Fig. 3 specifies whether community detection was performed using the 
Louvain algorithm or by fitting an SBM. Note that this comparison between the partition with the full network 
and the super node representation within each method corresponds to Fig. 2A. To give some intuition about what 
value of NMI is considered good, we put our results in the context of the partition variability among 10 runs of the 
same community detection algorithm. In Fig. 3A, we indicate the mean pairwise NMI between multiple runs of 
the Louvain algorithm and SBM fitting with horizontal pink and blue lines, respectively (as described in Fig. 2B). 
For the most part, the pairwise NMI between partitions is not 1. Therefore, by increasing the number of super 
nodes, we can only expect to asymptotically approach the mean pairwise NMIs between multiple runs of the 
same algorithm on the full network. Randomly permuting the node-to-community assignment obtained under 
the super node representation (zSN,perm) 1000 times and computing the NMI with the full network (i.e. NMI(zFull, 
zSN,perm)) gives a mean NMI of approximately 0.01. Another interesting observation is that for both the Louvain 
algorithm and the SBM, the NMI results level out at between 300 to 400 super nodes.

In practice, one of the most desirable properties of a super node representation of the network is the decrease 
in the run-time of community detection algorithms in comparison to using the full network. In Fig. 4, we 
recorded the runtime required to identify communities with the Louvain algorithm and stochastic block model 
inference procedure under the full a 500 node super node network representations in each of the 9 networks. The 
Louvain algorithm is fast and scales well, at O(M) per iteration for M edges, with its relative speed and high mod-
ularity values contributing to its popularity. While the reported runtimes may seem quite modest, in practice it is 
common to run many realizations of the algorithm (hundreds, thousands, or even more for large networks) to 
explore resolution parameters and stochastic variation due to pseudorandom node order in the heuristic. We note 
a large increase in runtime for the full Stanford network, with over 2 million edges. As also observed in the figure, 

Figure 3.  Super Node Quality. We computed normalized mutual information (A) and under segmentation 
error (B) for networks represented by between 100 and 600 super nodes. Line type and color indicate the 
community detection algorithm applied (Louvain algorithm or SBM fitting). Each curve indicates the mean 
across 5 super node representations. The shaded area shows standard deviation. (A) Normalized mutual 
information between the full and super node representations of networks [i.e. NMI(zFull, zSN)]. A network 
representation with more super nodes. generally increases the NMI between full network and super node 
network representations. Horizontal lines indicate the mean pairwise NMI between 10 runs of the Louvain 
algorithm and SBM result on the full network (pink and blue, respectively). Given the high variability between 
multiple runs of the same algorithm on the full network, adding more super nodes can only improve the 
NMI between the full and super node representation. (B) The log under segmentation error for super node 
representations. Defining a super node representation with more super nodes generally decreases the under 
segmentation error.
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fitting a stochastic block model, at O N N( ln )2  for sparse networks in this implementation6, becomes significantly 
slower on the full networks with more than 200,000 edges.

While we see a significant improvement in community detection runtime from using super nodes for both 
methods, the benefit in the SBM fitting is particularly large, especially for the bigger networks (Dblp, Stanford, 
Email). In moving to the super node representation, we traded out large-coefficient scaling-with-N community 
detection computations for those scaling with S N  (with possible increases due to the increased density of the 
super node representation), at the cost of constructing the super node representation. In particular, we observe 
the SBM runtimes on super nodes appear to be relatively independent of M. We note that each of the three steps 
building our super-node representation is O(M), so in the large graph limit the expected gain of our approach 
may be only a constant factor over Louvain iterations and the SBM fitting (up to logarithmic factors). In the pres-
ent calculations, we have not endeavored to optimize the runtime to build our super node representations; even 
so, the three steps building the S = 500 super node representation of the Stanford network in our current imple-
mentation together take ~350 sec with CoreHD and ~200 sec using highest-degree nodes. While this alone might 
not seem like a large improvement compared to a single realization of running Louvain or fitting an SBM, the 
computational gains compared to generating multiple community partitions can be quite significant.

Next, we present evidence that there is variability in the partitions generated by multiple runs of the same 
community detection algorithm on the same network representation. We sought to quantify how the variability or 
pairwise similarity between multiple runs of the same algorithm under the super node representation changes as a 
function of the number of super nodes. Furthermore, we directly compared these results to variability observed in 
the full network under the default and matched algorithm parameters (Fig. 5A,B), respectively. Curves represent 
the mean pairwise NMI between all pairs of 10 computed partitions under the super node network representation 
and shading shows standard deviation. The pink and blue curves show the within-method comparisons on the 
super node network representation for the Louvain algorithm (‘Louvain vs Louvain’) and stochastic block model 
(‘SBM vs SBM’), respectively (comparison referenced in Fig. 2B). We were also interested in the variability of the 
partitions obtained between partitions of the super node representation found with different algorithms. This 
result is shown in the gold curve and labeled ‘Louvain vs SBM’ (comparison described in Fig. 2C). The horizontal 
lines show the mean pairwise similarity observed between all 10 runs of the Louvain algorithm and stochastic 
block model (pink and blue, respectively) on the full network (comparison Fig. 2B). Similarly, the horizontal 
gold line shows the mean pairwise similarity between all runs of the Louvain algorithm and SBM fitting on the 
full network (comparison Fig. 2C). Note that the curves are the same in both A. and B. because the matched and 
default parameters are incorporated only on the full network to best match the scale of the super node representa-
tion. The most significant improvement we observe under the super node representation is between runs of the 
Louvain algorithm and SBM fitting, suggesting that the new compressed representation of the network has prom-
inent structural features that are robustly identified with both approaches. A high normalized mutual information 
between a pair of partitions indicates that the algorithms identified similar community structures. The Louvain 
algorithm is generally less variable than fitting an SBM, but we also observed decreased variability in the fitting of 
stochastic block models on the super node representation.

While we have emphasized benefits in the mechanics and usability of running standard community detection 
algorithms, we now seek to address whether the communities that we find using the super node representation align 
with local network connectivity so that neighbors are more likely to have similar community assignments and how 
this alignment compares with what we would have found by community detection on the full network. While we 
visualize this qualitatively for the As22 network in Fig. 6E–H, we also designed a prediction task to quantify this 
alignment. In this prediction task, we seek to take a node-to-community partition (from either the full or super node 
network representations zFull or zSN, respectively) and the full network   to see how accurately we can predict mem-
bers of a community for different neighborhood sizes. For network   with node-to-community assignments z, we 
assign a probability distribution to each node over all of the communities under z. For a neighborhood order o 
(x-axis in Fig. 6), we say that node i has probability of being in community k, based on what fraction of its neighbors 

Figure 4.  Runtimes. We compare community detection runtimes (in seconds) with the Louvain algorithm and 
by fitting an SBM on the full networks and super node representations for the 9 data sets. (A) Louvain on the 
full network. (B) Louvain on the super nodes. (C) SBM on the full network. (D) SBM on the super nodes.
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belong to that community under z. Then for each community in z, we perform a binary prediction task for whether 
each node of   should be assigned to that community, according to the computed probability distributions for all 
nodes with respect to that community.

We sweep the probability parameter, p, representing the required threshold probability for a node to achieve in 
order to be assigned to a community in this binary classification task. By sweeping p for each of the communities, 
we compute an ROC curve for each community and the corresponding areas under the curve (AUC). Finally, 
we use the minimum AUC value as our summary statistic of this task, with a high AUC value indicating that the 
neighboring regions of a node were strong predictors of community assignments, as shown in Fig. 6A–D. All 
experiments are performed on 5 networks (As22, Enron, CMatter, Dblp, Amazon) and for both the matched and 
default parameters (indicated by line type) in the full network. (Recall from section 3.1 that the matched param-
eters for the full network were chosen based on the super node partition results under default settings; hence, 
there is no corresponding ‘matched’ set for the super nodes in these plots.) We observe in most cases using the 
super node representation improves the minimum AUC value, indicating that communities obtained from this 
representation have higher agreement with local connectivity by this measure.

To qualitatively evaluate how the super node representation is able to ultimately partition the network into 
communities that are locally relevant, we visualize the As22 network, with nodes colored by communities iden-
tified under the full network (E,G) and super node representation (F,H) under Louvain (E,F) and SBM (G,H). 
Consistent with the quantitative results in Fig. 6A–D, we observe that the super node representation leads to an 
effective coarse-graining, with the community labels appearing to be qualitatively consistent across large regions 
of the network.

Comparison with other network compression methods.  Thus far, we have shown how our approach 
to defining super nodes can be used to identify communities with high agreement to the result obtained using the 
full network. As we described in the beginning of this paper, the desire to compress networks is an area of active 
research, so we sought to compare the performance of our approach to some of the state-of-the-art methods for 
this task. We focused on comparison with two alternative methods, due to their publicly available code and for 
being straightforward to implement. First, we compare our results to seeds selected with Slashburn23, a node reor-
dering method suited for network compression. Second, we compare to k-core based clustering (KCBC), intro-
duced in ref.24. Here, we will briefly define each method and how we used it for the task of defining super nodes.

Slashburn.  Slashburn23 is a node reordering algorithm used for graph compression. This method uses hubs 
to decompose a network into connected components. Formally, Slashburn seeks to identify the ordering of the 
nodes such that a specified storage cost function is minimized. Iteratively, high centrality nodes are removed, 
while high degree nodes are ranked earlier in the ordering and low degree nodes are ranked later. We used the 
implementation of Slashburn available on github (https://github.com/theeluwin/bear). The input to Slashburn 
is the original network, A, and the output is a permutation of the node indices. From the Slashburn ordering 
of nodes, we defined seeds around which to grow our S super nodes by considering the top S Slashburn ranked 
nodes. Related to our approach using CoreHD, we used Slashburn in this context as a method to select seeds. For 

Figure 5.  Quantifying partition variability. For each of the 9 networks, we obtained 10 different partitions by 
the Louvain algorithm and 10 different SBM fits under the default (A) and matched settings (B). To assess the 
similarity between partitions within and between community detection algorithm in the constructed super 
node networks, we computed pairwise normalized mutual information (NMI) as a function of the number of 
super nodes. The pink and blue curves show the mean pairwise normalized mutual information between all 
pairs of 10 partitions under Louvain and SBM fitting, respectively. The gold curves compare pairs of partitions 
under different methods. Shaded area denotes standard deviation. Horizontal lines indicates the mean 
pairwise NMI between partitions under the full network representation for within Louvain and SBM partition 
comparison (pink and blue, respectively) and between Louvain and SBM partition comparison (gold). Overall, 
the super node representation is useful for reducing the disparity between the partitions obtained under 
different methods.

https://github.com/theeluwin/bear
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the problem of identifying representative network structures described in ref.24, the authors used Slashburn to 
identify meaningful network substructures. In particular, they found substructures by considering the ego net-
works of the highly Slashburn ranked nodes.

KCBC.  The k-core based clustering introduced by Liu et al.24 is an important part in their proposed network 
summarization method, ‘CONDENSE’ (Conditional Diversified Network Summarization). The overarching 
objective of CONDENSE is to concisely describe the network with a set of subgraph structures in such a way that 
achieves minimum description length. To identify the set of substructures, the authors decompose their network 
through a k-core decomposition. To do this, k-cores are iteratively removed, starting by setting k equal to the max 
core number. At each of these steps, each connected component resulting in the present k is denoted as a decom-
position set and treated as an induced subgraph. Edges in the network between nodes in the decomposition set are 
then removed. This process is repeated until all edges in the original network have been removed. Furthermore, 
each of the connected components extracted in this process comprises one member the set of representative net-
work structures. We use KCBC to define seeds for our super node centers by extracting the highest degree node 
(according to degree in the full network) in each of the identified substructures. Note that unlike our own seed 
selection method and the Slashburn seed selection approach, we do not control how many super nodes to use 
to represent the network. Instead, we use only as many super nodes as there are substructures under the k-core 
based clustering approach.

First, we simply compared the set of seeds selected under CoreHD to the seeds obtained with Slashburn 
(denoted Slash) and through k-core based clustering (KCBC). For each of our 9 networks, we computed a set of 
seeds under each of the three methods and then computed the Jaccard similarity between the set of super nodes 
(S*) under each possible pair of the three methods. We considered sets of seeds from S = 100 to S = 600. As 
described above, we did not explicitly specify the number of super nodes, S, to identify with KCBC. These results 
are shown in Fig. 7. Each column represents one of the three possible pairwise comparison between the three 
methods. We noticed the strongest similarity between our method of finding seeds and KCBC. In general though, 
the sets of seeds returned are quite distinct.

Next, we sought to perform the analysis of super node quality described in Fig. 3 for the Slashburn and KCBC 
methods. Similar to the results presented in Fig. 3, we also performed analysis on NMI(zFull, zSN) and under seg-
mentation error among super node results defined under CoreHD and Slashburn. Overall, we find the results 
on partition agreement (NMI(zFull, zSN)) to be qualitatively similar regardless of how seeds are chosen. However, 
we note that for each of the 9 networks seeds chosen with the Core HD method resulted in higher agreement 
between community detection results on the full and super node network representations (NMI(zFull, zSN)). 

Figure 6.  Agreement of community assignments with local connectivity. We study how consistent partitions 
are within local neighborhood regions of the network by examining how well a node’s neighbors (for various 
order neighborhoods) can be used to predict its community assignment, under some community partition 
z. For each community in a partition, we give a binary prediction of whether a node is assigned to that 
community, based on probabilities we compute for a node from its neighbors. Sweeping the parameter p 
that sets the probability required for a node to be assigned to a community, we compute ROC curves for 
each community and report the minimum AUC value observed. Panels (A–D) show minimum AUC values 
observed as a function of neighborhood order for communities obtained from the full networks and super node 
representations by Louvain and by SBM. Line color indicates network and line type indicates communities 
obtained from the matched and default parameters used by the algorithms on the full networks. Panels (E–H) 
visualize the communities obtained in the As22 data on the full network (default parameters) and super node 
representation (SN) under Louvain and SBM, with node colors indicating community memberships.
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Sometimes these differences are marginal, but other times they are significant. In Fig. 8, we show NMI(zFull, zSN) 
and the under segmentation error in panels A. and B., respectively. Defining super nodes with Slashburn has 
high NMI for both the Louvain algorithm and the SBM on the Amazon and Stanford networks. The maximum 
mean NMI(zFull, zSN) for Amazon and Stanford across various values of super nodes tested with the Louvain 
algorithm are 0.63 and 0.62, respectively. Using our core HD technique to define seeds and applying the Louvain 
algorithm gives NMI values of 0.69 and 0.62 for Amazon and Stanford, respectively. Similarly, the maximum 
mean NMI(zFull, zSN) for Amazon and Stanford networks with Slashburn under the SBM are 0.63 and 0.53, respec-
tively. This compares to our results with CoreHD yielding maximum mean NMI(zFull, zSN) of 0.67 and 0.6 for 
the Amazon and Stanford networks, respectively. In the As22 networks, Slashburn produces maximum mean 
NMI(zFull, zSN) of 0.26 and 0.25 under the Louvain algorithm and SBM, respectively. Our results with Core HD are 
much stronger with maximum mean NMIs under Louvain and SBM of 0.56 and 0.46, respectively. These results 
can be more easily visualized in the Slashburn columns of Tables 2 and 3. We also observe larger variability in 
under segmentation error when defining super nodes with Slashburn.

In Fig. 9 we show the results for (NMI(zFull, zSN)) and under segmentation error for the super nodes defined 
with KCBC. Again, under this method the number of super nodes is not specified and instead is determined 
based on the number of structures identified through the k-core based graph decomposition. Hence, for each 
network, we can not study how (NMI(zFull, zSN)) and under segmentation error vary as a function of the number 

Figure 7.  Comparing methods for finding seeds. We identified seeds in each of our 9 networks using our Core 
HD based approach (CoreHD), Slashburn (slash), and k-core based clustering (KCBC). Jaccard similarity was 
used to quantify the similarity between each set of seeds (S*) returned by each method for varying numbers of 
super nodes. We observed the strongest similarity between our 2-core based seed selection approach and KCBC.

Figure 8.  Super node quality with slashburn. Seeds were defined using Slashburn to result in network 
representations of the original network between S = 100 and S = 600 super nodes. We performed the super 
node quality analyses shown in Fig. 3, profiling (NMI(zFull, zSN)) (A) and under segmentation error (B). Each 
curve represented the mean value across 5 runs of each experiment and shaded area denotes standard deviation. 
When considering the maximum mean NMI value observed across various numbers of super nodes, the 
CoreHD approach and often the Slashburn approach tend to produce higher NMI values. Under segmentation 
errors are similar across each of the three approaches.
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of super nodes. Instead, we defined super nodes 5 times according to KCBC and created bar plots for our two 
super node quality metrics in each of the 9 networks under the Louvain algorithm and the SBM. In these plots, 
error bars denote standard deviation. In general, the KCBC approach does not perform as well as CoreHD and 
Slashburn. Defining super nodes with KCBC results in the strongest NMI(zFull, zSN) in the Stanford network 
under both the Louvain algorithm and SBM with values of 0.5 and 0.55, respectively. However, on this network 
both CoreHD and Slashburn yield superior results. Under the Louvain algorithm the maximum mean NMI of 
CoreHD and Slashburn are 0.62. With the SBM the maximum mean NMI values are 0.6 and 0.53, respectively. 
Similar to the pattern we observed in Fig. 8, KCBC also does not perform very well on NMI(zFull, zSN) in the As22 
network. We refer to the KCBC column in Tables 2 and 3 for a closer look at these results. Under segmentation 
error is comparable to the CoreHD and Slashburn results.

We summarize the differences in the super node network performance obtained with CoreHD as opposed to 
Slashburn or KCBC by looking closely at the maximum NMI(zFull, zSN) obtained across all possible numbers of 
super nodes. Creating a super node representation of the network with S = 600 leads to the maximum value of 

CoreHD Slashburn KCBC

CMatter 0.24 0.17 0.09

As22 0.56 0.26 0.21

Enron 0.39 0.29 0.27

BrightKite 0.31 0.25 0.22

Amazon 0.69 0.63 0.35

Dblp 0.23 0.16 0.15

Email 0.46 0.34 0.31

Stanford 0.62 0.62 0.5

NotreDame 0.5 0.42 0.38

Table 2.  NMI(zFull, zSN) under the Louvain algorithm for S = 600 super nodes.

CoreHD Slashburn KCBC

CMatter 0.45 0.39 0.25

As22 0.46 0.25 0.22

Enron 0.37 0.25 0.22

BrightKite 0.23 0.19 0.17

Amazon 0.67 0.63 0.39

Dblp 0.41 0.30 0.23

Email 0.18 0.12 0.15

Stanford 0.6 0.53 0.55

NotreDame 0.52 0.37 0.43

Table 3.  NMI(zFull, zSN) under the SBM for S = 600 super nodes.

Figure 9.  Super Node Quality with KCBC. Seeds were defined with KCBC. Since KCBC does not allow for the 
specification of the number of super nodes, we obtained only one super node representation result (hence the 
barplot). The results here show the super node quality results from Fig. 3, profiling profiling (NMI(zFull, zSN)) 
(A) and under segmentation error (B). We defined the super node representation 5 different times under this 
method, with error bars denoting standard deviation. While the NMI(zFull, zSN) are comparable to both CoreHD 
and slashburn, they are often inferior. The results for under segmentation error are comparable.
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NMI(zFull, zSN) among all values of S we considered in our experiments. We report the NMI(zFull, zSN) of all 9 net-
works under the Louvain algorithm and the SBM for a representation with S = 600 super nodes in Tables 2 and 3,  
respectively. Given the differences among the three compared methods for defining seeds (CoreHD, Slashburn, 
KCBC), it is important in future work to understand the properties of particular networks that lead to differences 
in performance among these methods.

Discussion
We developed an approach for compressing a network into a super node representation that can be input to 
standard community detection algorithms. Using the smaller super node network reduces runtime and the var-
iability between multiple runs of the same community detection algorithm. Our results also demonstrate that 
the communities in the super node network are better aligned with local network neighborhoods in a predictive 
sense, while still being in relatively good alignment with the partitions obtained using the full network.

Super nodes may be useful in a variety of contexts where large datasets are otherwise difficult to mine and 
interpret. For example, one might visualize the super node version of the network rather than the entire network, 
or use the members of a super node to identify redundant information in the network. Future work on super node 
representations can include the extension of this method to directed, signed, attributed, or bipartite networks. 
Additionally, one might consider a probabilistic model framework, attempting to infer latent super node assign-
ments. Future work may also examine graph theoretic properties of super node representations in terms of how 
it aligns with the original network.

Methods
We create a super node representation through three steps, outlined in Fig. 1. First, we define seeds. Next, we 
‘grow’ super nodes by assigning the remaining nodes to seeds. Finally, the network of super nodes is defined by 
agglomerating edges, and can then be used in a community detection algorithm.

Identify Seeds in the Network.  To define S seeds, we aim to identify a set of nodes S* that satisfy the 
following criteria. First, seeds should have high centrality, or importance in the network. This ensures that we do 
not define a seed as some node on the periphery of the community and not similar to many other nodes in the 
network. Second, seeds should be effective at collapsing the network. Since our motivation for defining seeds is 
to serve as a center to agglomerate the remaining nodes around, each seed should be within close neighborhood 
regions for many nodes. Third, seeds should be well separated from one another so as to maximize the resulting 
compression. The most naive approach is to select nodes with highest degree, and this might be perfectly reason-
able under various circumstances. Importantly, the selection of nodes with highest degree is computationally fast, 
requiring O(M) operations, summing over the M edges to calculate the degrees of the N nodes.

At slightly higher computational cost, we employ the CoreHD algorithm, which nearly optimally identifies 
nodes in network decycling and dismantling28. CoreHD recursively identifies the highest degree node in the 
2-core. The 2-core is simply the maximal connected subgraph in which all nodes have at least degree 2. At each 
iteration, we add the identified highest degree node to our seed set and remove it from the network used by fur-
ther CoreHD iterations. After the removal of this node, the 2-core is recomputed. The difference between select-
ing highest degree nodes and CoreHD for our present task may be small, both in terms of result and computational 
cost. In particular, because we will only select S N  seeds, there is reduced opportunity for the removals to lead 
to subgraphs with substantial differences between degree order in the graph and its 2-core. Indeed, in our experi-
ence, simply selecting the highest degree nodes as the seeds often works well in practice. Because of the minimal 
extra computational cost for computing the 2-core, we use CoreHD for all of our results shown here.

We were motivated to use the 2-core based on the results in ref.28, where in the context of the network decy-
cling and dismantling problem, updating the 2-core in each iteration after deleting high degree nodes is conven-
ient and can quickly decompose the network into smaller components.

Grow Super Nodes Around Seeds.  Once the set of seeds, S*, is defined, we ‘grow’ them out agglomerat-
ing nearby nodes to build the super nodes. We formally define a super node as a subset of one or more nodes 
from the original network,  . To do this, seeds are grown out to engulf nodes in increasing neighborhood 
orders until either all nodes are assigned to a super node center or until a user-defined number of neighborhood 
orders has been considered. The maximum order, omax, can be specified to control the maximum order neigh-
borhood to consider in building the super nodes. If after omax, there are still unassigned nodes, the unassigned 
nodes are not used to build the new super node network and are all ultimately assigned to the same periphery 
community as they are not considered relevant to the network core. Depending on the number of chosen super 
nodes, S, the degree distribution of the original network and the quality of the chosen seeds at collapsing the 
network, different networks will require repeating the agglomeration process for different neighborhood orders 
if one wants to ensure every node is assigned to a super node. In all of our experiments in this paper, we used 
omax = 6, as we observed that for most networks this value successfully assigns the majority of the nodes to a 
super node. The output is a vector, s of length N, which gives the node-to-super-node assignments for the nodes 
in the original network.

Create Network of Super Nodes.  Finally, after growing the super nodes, we create a new network rep-
resentation of the super nodes. To do this, we create a weighted network,  , where each super node is a node and 
the weight of the edge between a pair of distinct super nodes is the total weight of edges in the original network   
between pairs of nodes assigned to the respective super nodes. For pairs of super nodes whose members have no 
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edges between them in  , there is no corresponding edge in  . By definition, we construct   with no self loops. 
Moreover, the produced super node network representation produces a weighted network where the edge weights 
are counts.

After applying community detection to the super nodes, their community assignments are mapped back to 
their constituent N nodes of the original network,  . We denote this final N-length matched community assign-
ment as z. In experiments in the Results section, we consider the node-to-community assignment zFull obtained 
by applying community detection to the full network and the mapped result zSN obtained by applying community 
detection to the super node representation.

Code availability.  Our code for creating a super node representation of a network is available on github: 
https://github.com/stanleyn/SuperNode.
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