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Peli1 negatively regulates noncanonical NF-κB
signaling to restrain systemic lupus erythematosus
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Mingzhu Huang6, Xiaodong Zhu6, Jin Jin7, Xuhong Cheng8, Shao-Cong Sun8 & Yichuan Xiao 1

Systemic lupus erythematosus (SLE) is characterized by uncontrolled secretion of auto-

antibodies by plasma cells. Although the functional importance of plasma cells and auto-

antibodies in SLE has been well established, the underlying molecular mechanisms of

controlling autoantibody production remain poorly understood. Here we show that Peli1 has a

B cell-intrinsic function to protect against lupus-like autoimmunity in mice. Peli1 deficiency in

B cells induces autoantibody production via noncanonical NF-κB signaling. Mechanically, Peli1

functions as an E3 ligase to associate with NF-κB inducing kinase (NIK) and mediates NIK

Lys48 ubiquitination and degradation. Overexpression of Peli1 inhibits noncanonical NF-κB
activation and alleviates lupus-like disease. In humans, PELI1 levels negatively correlate with

disease severity in SLE patients. Our findings establish Peli1 as a negative regulator of the

noncanonical NF-κB pathway in the context of restraining the pathogenesis of lupus-like

disease.
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Systemic lupus erythematosus (SLE) is a complex, multi-
system autoimmune disease with the etiology of a combi-
nation of genetic and environmental factors. The hallmark

of SLE is an uncontrolled B cell production of autoantibodies
specific for nuclear antigens such as double-stranded DNA
(dsDNA) and chromatin etc., resulting in the formation and
deposition of immune complexes to cause tissue damage1–3. The
mature B cells are activated when encountering with antigens,
which induce B cell proliferation and the immunoglobulin class
switching, finally exhibit specific function through secreted
diversified antibodies4. Accumulating evidences from experi-
mental and clinical data indicate that B cells are essential for the
pathogenesis of SLE5–8. In addition, deletion of B cells or inhi-
biting B cell activation has been applied for clinically approved
therapeutic strategies during SLE treatment9–13.

It is known that noncanonical NF-κB signaling that induced by
CD40 ligand (CD40L), B cell-activating factor (BAFF), etc., is
critical for the antibody production in activated B cells14,15.
Previous studies have demonstrated that the activation of non-
canonical NF-κB pathway by these inducers is dependent on the
NF-κB inducing kinase (NIK), which activate IKKα to induce
p100 processing to p52, causing the translocation of p52/RelB
heterodimer into nucleus16,17. Accordingly, either NIK inactiva-
tion or functional mutation of p100 impairs the antibody secre-
tion and B cell-mediated immune responses18,19. In contrast,
mice overexpressing BAFF (BAFF-Tg mice) exhibit hyper-
activation of noncanonical pathway and develop an auto-
immune lupus-like disease with increasing production of auto-
antibodies20–22.

The activation of noncanonical NF-κB pathway depends on the
accumulation of NIK14,15, which is tightly regulated by the ubi-
quitination system. Under homeostasis, TRAF3 links NIK to
TRAF2-cIAPs E3 complex, thereby promoting cIAPs-mediated
Lys48-linked NIK polyubiquitination and degradation23,24. Thus,
activation of noncanonical NF-κB involves signal-induced reg-
ulation of NIK ubiquitination, but how this event is regulated is
not fully understood. The Peli (also called Pellino) family of
proteins are a type of E3 ubiquitin ligases, and mediate the for-
mation of both Lys63- or Lys48-linked polyubiquitin chains. We
and others have demonstrated that Peli1 is critical for the reg-
ulation of toll-like receptor (TLR) and interkeukin-1 receptor (IL-
1R) signaling in innate immune cells25–27, and modulates T cell
receptor (TCR) signaling in T cells28. Our study suggested that
Peli1 controls TLR-mediated TRAF3 degradation and MAPK
activation, leading to microglia activation and autoimmune
inflammation in central nervous system29.

In the present study, we uncover a crucial role for Peli1 in B
cell autoantibody production and SLE pathogenesis. We also
provide molecular and genetic evidence that Peli1 serves as an E3
ubiquitin ligase of NIK, regulating Lys48-linked ubiquitination of
NIK and noncanonical NF-κB activation.

Results
Peli1 deficiency promotes B cell activation. We previously
found that Peli1 is highly expressed in mouse splenic B cells28 and
in human CD19+ B cells (BioGPS data), but whether and how
Peli1 may affect B cell function and SLE pathogenesis is still
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Fig. 1 Peli1 deficiency promotes B cell proliferation and antibody secretion. a, b Flow cytometric analysis of the percentages of B cell subpopulations in the
spleens of WT and Peli1-dificient mice. Data are presented as a representative plot (a) and summary graph (b). c The absolute numbers of B220+ B cells in
the spleens of WT and KO mice. d Proliferation of WT and KO splenic B cells incubated in vitro for 72 h in the absence (NT) or presence of anti-CD40
(αCD40) or BAFF, then assessed by [3H]thymidine incorporation. e Enzyme-linked immunosorbent assay (ELISA) of NP-specific antibody isotypes in the
serum of WT and Peli1-dificient mice immunized intraperitoneally with NP-KLH, NP-LPS, or NP-Ficoll. f ELISA of NP-specific IgM, IgG2a and IgG3 in the
serum of Rag1-dificient mice that transferred with WT T cells plus WT or KO B cells, and then immunized intraperitoneally with NP-KLH. Data are shown as
the mean ± SEM based on three independent experiments. Two-tailed Student’s t-tests were performed. *P < 0.05 and **P < 0.01
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unknown. Taking advantage of Peli1-knockout (KO) mice and
their wild-type (WT) littermate, we examined the role of Peli1 on
B cells development, proliferation and antibody production
ability. The results indicated that there are comparable fre-
quencies of B cell sub-types both in spleens (Fig. 1a, b) and BMs
(Supplementary Fig. 1a, 1b) between WT and KO mice. However,
the absolute number of CD19+ B cell in the spleen significantly
increased in Peli1-deficienct mice (P < 0.01, by Student’s t-tests,
Fig. 1c). We previously reported and now confirmed that Peli1
deficiency is dispensable for BCR-induced but impaired TLR-
induced B cell proliferation27 (Supplementary Fig. 1c), which
promote us to speculate that the incensement of B cells in Peli1-
deficient mice may attribute to the promotion of noncanonical
NF-κB signaling. Indeed, the proliferation of KO B cells was
significantly enhanced upon the stimulation by anti-CD40 and
BAFF (P < 0.01, by Student’s t-tests, Fig. 1d), two major non-
canonical NF-κB inducers for B cells.

CD40L is a costimulatory molecule that is expressed on T cells,
and mediates B cell activation and antibody production through
its ligation with CD40, which promote the noncanonical NF-κB
activation and represent the T cell-dependent stimulation for B
cells17. To examine whether Peli1 mediates CD40L-induced
antibody secretion in vivo, we immunized WT and KO mice with
T cell-dependent antigen 4-hydroxy-3-nitrophenylacetyl (NP)-
keyhole lympet hemocyanin (KLH), as well as with T cell-
independent antigens, including NP-LPS and NP-Ficoll as
controls. The data showed that Peli1 deficiency dramatically
promoted the secretion of antigen-specific IgM, IgG2a, and IgG3
in the sera when the mice were immunized with NP-KLH (P <
0.05 and P < 0.01, by Student’s t-tests, Fig. 1e). In contrast,
deletion of Peli1 didn’t affect the ability of B cells to produce
antigen-specific antibodies in response to NP-LPS immunization,

and caused a slight increase of some antibody isotypes (IgG2a,
IgG2b) upon NP-Ficoll immunization (Fig. 1e). These results
suggested that Peli1 inhibits B cell antibody production
specifically dependent on T cell-mediated signaling.

To further confirm that Peli1-mediated suppression of anti-
body production is due to its direct function in B cells, we
immunized the Rag1-deficient mice that transferred with WT
T cells plus WT or KO B cells with NP-KLH. Consistent with the
result obtained from global Peli1-KO mice, the production of
antigen-specific antibodies, such as IgM, IgG2a, and IgG3, were
significantly increased in the recipient mice that transferred with
KO B cells, as compared with the mice that transferred with WT
B cells (P < 0.01, by Student’s t-tests, Fig. 1f). Thus, these data
demonstrated that Peli1 is a negative regulator to restrain the
proliferation and antibody production in B cells specifically in
response to noncanonical NF-κB stimulation.

B cell Peli1 protects against the lupus autoimmunity. In order
to examine whether Peli1 may regulate SLE pathogenesis, we
induced lupus-like disease in wild-type (WT) and Peli1-knockout
(KO) mice by immunization with the CD4+ T cells from BM12
mice. In this model, the donor CD4+ T cells will be recognized by
recipient antigen presenting cells and differentiated into T folli-
cular cells (Tfh), which promote the expansion of recipient-
derived germinal center (GC) B cells and antibody-producing
plasma cells, and the production of autoantibodies30. The results
showed that WT mice developed clinical symptoms of lupus-like
disease that were characterized by the deposition of IgG in the
kidney (Fig. 2a), and the immunized Peli1 mutant mice exhibited
more severe lupus-like disease with increased IgG deposition in
the kidney (Fig. 2a). This phenotype of the KO mice was
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Fig. 2 Peli1 deficiency aggravates the induction of lupus-like disease. a WT and Peli1-deficient (KO) mice were intraperitoneally injected with 7.5 million of
CD4+ T cell from C57BL/6 mice (control) or from BM12 mice. Representative immunofluorescent images showing IgG deposits in kidney by staining with
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graph (right panel). c Distinct anti-nuclear antibody (ANA) staining patterns of the Hep-2 cell line with serum from WT and KO mice 4 weeks after
immunization as described in (a). Scale bar, 50 μm. d Enzyme-linked immunosorbent assay (ELISA) of anti-dsDNA, anti-ssDNA, and anti-histone IgG in
serum from WT and KO immunized mice as described in (a) at the indicate time point. e Immunoblot showing NIK and p52 protein levels in splenic B cells
from control and BM12 CD4+ T cells immunized WT and KO mice as described in (a). Data are shown as the mean ± SEM based on three independent
experiments. Two-tailed Student’s t-tests were performed. *P < 0.05 and **P < 0.01
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associated with increased frequencies of plasma cells and GC B
cells (Fig. 2b). Accordingly, the production of serum anti-nuclear
antibody, and the serum levels of IgG against dsDNA, ssDNA,
and histone were significantly enhanced in KO mice as compared
with WT mice (P < 0.05 and P < 0.01, by Student’s t-tests, Fig. 2c,
d). Interestingly, we found that BM12 CD4+ T cells immuniza-
tion significantly induced the activation of noncanonical NF-κB
as suggested by increased NIK, the master kinase for this path-
way, and the p52 levels in splenic B cells from immunized mice.
Moreover, Peli1 deficiency markedly promoted more NIK and
p52 accumulation than that in WT B cells (Fig. 2e), suggested a
potential negative role of Peli1 in B cells to regulate noncanonical
NF-κB activation and autoimmunity in lupus-like disease.

To confirm that Peli1 in B cell protect against the
autoimmunity in lupus-like disease, we constructed the mixed
bone marrow (BM) chimeric mice by reconstituting the lethal

dose irradiated B cell-deficient μMT mice with the mixed BMs
from μMT mice and Peli1 WT/KO mice (μMT: Peli1 WT/KO=
5: 1) (Fig. 3a). In these chimeric mice, μMT mice BM will provide
all the genetic-competent immune cells except for B cells, and
Peli1 WT/KO mice BM will provide the Peli1-competent or
Peli1-deficient B cells. By using these chimeric mice to mimics the
B cell-specific Peli1-KO condition in vivo, we found that NP-
KLH immunization induced significantly increased production of
serum antigen-specific antibodies in KO/μMT chimeric mice as
compared to WT/μMT chimeric mice (P < 0.01, by Student’s t-
tests, Fig. 3b). In addition, KO/μMT chimeric mice developed
more severe lupus-like disease than WT/μMT chimeric mice, as
characterized by increased IgG deposition in the kidney (Fig. 3c),
elevated frequencies of GC B cells and plasma cells (Fig. 3d, e),
and enhanced production of serum anti-nuclear antibody (Fig. 3f),
and the serum levels of IgG against dsDNA, ssDNA, and histone
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(Fig. 3g). These results collectively confirmed a B cell-specific role
of Peli1 in mediating the autoantibody production and lupus-like
autoimmunity, in which Peli1 may mediate the suppression of
noncanonical NF-κB activation.

Peli1 negatively regulates noncanonical NF-κB signaling. To
figure out whether and how Peli1 mediate the inhibition of
noncanonical NF-κB activation, we firstly examined the surface
expression of CD40 and BAFF receptor (BAFFR), which are the
two major receptors responsible for the transduction of non-
canonical NF-κB signaling in B cells. We observed equal
expression levels of these two receptors on the surface of WT and
Peli1-deficient splenic B cells (Fig. 4a). However, electrophoretic

mobility-shift assay (EMSA) results showed that the activation of
NF-κB was dramatically promoted in Peli1-deficient splenic B
cells that stimulated with anti-CD40 as compared with that in
WT B cells (Fig. 4b). In addition, the supershift assay suggested
that both anti-RelB and anti-p52 antibody alone shifted nearly the
entire NF-κB signals (Fig. 4c), suggesting that anti-CD40-induced
translocation of NF-κB complexes were composed primarily of
RelB-p52 heterodimers in B cells. Moreover, the heightened NF-
κB DNA-binding activity in Peli1-deficient B cells was associated
with a marked increase in nuclear levels of p52 and RelB by anti-
CD40 and BAFF stimulation (Fig. 4d, e). To exclude the devel-
opmental influence on B cell activation, we examined the non-
canonical NF-κB activation in Peli1-knockdown M12 B cells, a
murine B-lymphoma cells that commonly used to study the
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graph to quantify the relative NF-κB signals (right). c Supershift assay determining the NF-κB complex in the nuclear extracts of WT and KO splenic B cells
that left unstimulated or stimulated for 16 h with anti-CD40 (αCD40, 1 µg/ml) by using the control antibody (IgG), anti-p52, or anti-RelB antibody. d, e
Immunoblot analysis of NF-κB proteins, NIK or Actin and lamin B (loading controls) in cytoplasmic extracts (CE) and nuclear extracts (NE) of B cells
stimulated with anti-CD40 (αCD40) (d) or BAFF (e). f, g Immunoblot analysis of the effect of Peli1 knockdown on NIK and NF-κB p100/p52 protein levels
in total lysis of M12 cells that stimulated with anti-CD40 (αCD40) (d) or BAFF (e). h Immunoblot analysis of NIK, p52, p100, Peli1, and HSP60 (loading
control) expression in PBMCs of 4 SLE patients. i QPCR determining the relative expression of the indicated apoptosis-related genes in WT and Peli1-
dificient splenic B cells that left untreated (NT) or stimulated with BAFF or anti-CD40 (αCD40) for 20 h. Data were normalized to a reference gene, Actin.
Data are shown as the mean ± SEM based on three independent experiments. Two-tailed Student’s t-tests were performed. *P < 0.05 and **P < 0.01. j
Immunoblot analysis of Traf3 protein levels in WT and KO splenic B cells that stimulated for different time point with anti-CD40 (αCD40)
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noncanonical NF-κB signaling in B cells. The results showed that
both anti-CD40 and BAFF stimulation promoted the activation of
noncanonical NF-κB signaling, as suggested by increased NIK
accumulation and the p52 levels, along with promoted p100
processing, in Peli1-knockdown M12 B cells, as compared with
that in control cells (Fig. 4f, g). Interestingly, we also found that
the NIK and p52 protein levels were markedly increased, along
with decreased p100 protein levels in peripheral blood mono-
nuclear cells (PBMCs) from SLE patients with Peli1low (hereafter
called SLE-PL) as compared with that from SLE patient with
Peli1high mRNA expression (hereafter called SLE-PH) (Fig. 4h),
suggesting that Peli1 may also negatively regulate noncanonical
pathway during human SLE pathogenesis. It is known that
noncanonical NF-κB signaling regulates the transcription of
apoptosis-related genes31,32, we also found that Peli1 deficiency
diversely regulated apoptosis-related gene expression in B cells

upon noncanonical NF-κB activation, characterized by increased
anti-apoptosis gene expression, whereas decreased pro-apoptosis
gene expression in KO cells (Fig. 4i).

In addition to the inhibitory effect of Peli1 in B cells, Peli1
deficiency also promoted noncanonical NF-κB activation in
mouse embryonic fibroblast (MEF) as suggested by increased
levels of nuclear p52 and RelB upon the stimulation of anti-LTβR
(Supplementary Fig. 2), another well-characterized noncanonical
NF-κB inducer17,33,34. Accordingly, Peli1-deficient mice displayed
a marked increase in the size and number of B cell-containing
colonic patches (CLPs) (Supplementary Fig. 3a, 3b), and had a
significant increase in fecal IgA concentration compared to wild-
type mice (P < 0.01, by Student’s t-tests, Supplementary Fig. 3c).
In addition, the intestines of KO mice had elevated expression of
two major chemokines, CXCL12 and CXCL13, and the cell
adhesion molecule MADCAM1 (Supplementary Fig. 3d), which
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Alexa Fluor 488-labeled anti-mouse IgG (a, Scale bar, 100 μm), the serum ANA were analyzed by using the Hep-2 cell line (b), and the anti-dsDNA, anti-
ssDNA, anti-histone IgG in serum were examined by ELISA (c). d Proliferation of WT and KO splenic B cells that infected with control or NIK shRNA,
incubated in vitro for 72 h in the absence (NT) or presence of anti-CD40 or BAFF, then assessed by [3H]thymidine incorporation. e–g Rag1-dificient mice
were adoptively transferred with WT or KO B cells that infected with control or NIK shRNA, and then immunized with BM12 CD4+ T cell. The kidney IgG
deposition were visualized with Alexa Fluor 488-labeled anti-mouse IgG (e, Scale bar, 100 μm), the serum ANA were analyzed by using the Hep-2 cell line
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also confirmed in MEF cells by anti-LTβR stimulation (Supple-
mentary Fig. 3e). These results suggest that Peli1-mediated
inhibitory function of noncanonical NF-κB pathway is a universal
effect, but not just restrict in B cells.

Activation of noncanonical NF-κB involves signal-induced
TRAF3 degradation23,24,35. We previously found that Peli1
mediated TLR-induced MAPK activation through the regulation
of TRAF3 degradation in microglial cells, which promoted us to
examine whether Peli1-mediated inhibition of noncanonical NF-
κB pathway is also due to its function on TRAF3. Interestingly,
Peli1 deficiency or knockdown did not affect the TRAF3
degradation status upon noncanonical NF-κB activation either
in splenic B cells or in M12 cells (Fig. 4j, Supplementary Fig. 4).
Therefore, these data suggested that Peli1 negatively regulates the
activation of noncanonical NF-κB signaling without affecting
TRAF3 degradation.

NIK is required for enhanced autoimmunity in Peli1-KO mice.
To further confirm the Peli1 function in B cells to regulate SLE
pathology, we induced lupus-like disease in Rag1-deficient mice
that transferred with WT or KO B cells by immunization with
BM12 CD4+ T cells. In concert with the data from global Peli1-
deficient mice and μMT chimeric mice, the recipient mice that
transferred with KO B cells developed more severe disease,
exhibiting increased IgG deposition in the kidney, enhanced ANA
production, and increased secretion of autoantibodies against
dsDNA and ssDNA (Fig. 5a–c). Thus, these results further
established a B cell-intrinsic role of Peli1 to suppress the devel-
opment of lupus-like disease.

Since the activation of noncanonical NF-κB signaling is
dependent on NIK14,15, we examined whether Peli1-mediated
modulation of this pathway is required for NIK. As shown in
Fig. 5d, anti-CD40 or BAFF stimulation induced comparable and
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suppressed proliferation index between WT and KO B cells that
were knocked down of NIK, as compared with control cells.
Furthermore, NIK knockdown in B cells alleviated the lupus-like
disease, and abolished the phenotype differences in Rag1-
deficient immunized mice that transferred with WT or KO B
cells, characterized by suppressed comparable kidney IgG
deposition, serum production of ANA and autoantibodies against
dsDNA and ssDNA (Fig. 5e–g). Taken together, NIK is required
for the promoted activation of noncanonical NF-κB signaling,
and the enhanced lupus-like autoimmunity in Peli1-KO mice.

Peli1 mediates Lys48-ubiquitination of NIK. Noncanonical NF-
κB activation requires the accumulation of its master kinase

NIK23,24,36, which is regulated by its Lys48-linked ubiquitination
and degradation. We found that Peli1 deficiency or knockdown
significantly promoted NIK accumulation and attenuated Lys48
ubiquitination of NIK in primary splenic B cell (Fig. 6a, b) and
M12 B cells (Supplementary Fig. 5a). In addition, overexpression
of full-length Peli1, but not its RING-deletion mutant (Peli1ΔC,
loss of E3 ligase function) markedly enhanced NIK ubiquitina-
tion, and overexpression of a non-specific deubiquitinase USP2
almost hydrolyzed all the ubiquitin chains of NIK that induced by
full-length Peli1 (Fig. 6c, Supplementary Fig. 5b, 5c), suggesting
Peli1 indeed mediate NIK ubiquitination but not the other
modifications. Because the ubiquitination process requires the
association of E3 ligase with its substrate, we examined whether
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Peli1 directly target NIK for ubiquitination. Expectedly, Peli1 and
NIK form a complex in resting cells, with an enhanced associa-
tion between these two proteins upon anti-CD40 stimulation
(Fig. 6d, Supplementary Fig. 5d). The Peli1–NIK interaction was
further confirmed using a transient transfection experiment in
which the overexpressed Peli1 strongly associated with NIK
(Fig. 6e). Moreover, in vitro ubiquitination assay indicated that
WT full-length Peli1, but not its RING-deletion mutant mediated
Lys48 ubiquitination of NIK in the presence of E1, E2 (UbcH5c),
and ATP (Fig. 6f). These results suggested that Peli1 directly
targets NIK and mediates Lys48 ubiquitination and degradation
of NIK.

Published results have demonstrated TRAF2-cIAPs E3 com-
plex is the only previously known regulatory system for Lys48
ubiquitination of NIK23,24, we asked whether Peli1-mediated NIK

Lys48 ubiquitination requires cIAPs. Consistent with the reported
data, cIAPs inhibition by its specific inhibitor smac mimetic BV6
promoted NIK accumulation, p100 processing as well as
increased protein levels of p52. Interestingly, Peli1 knockdown
further enhanced smac mimetic-mediated incensement of NIK
and p52 level either by anti-CD40 or BAFF stimulation (Fig. 6g).
Moreover, Peli1 knockdown could further attenuated Lys48
ubiquitination of NIK even without cIAPs (Fig. 6h). Collectively,
these data suggested Peli1 serves as a direct E3 ligase of NIK, and
mediates Lys48 ubiquitination and degradation of NIK indepen-
dent of cIAPs.

Overexpression of Peli1 prevents lupus-like disease. Since the
aforementioned results established Peli1 as a negative regulator of
NIK accumulation, we reasoned that overexpression of Peli1 may
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has adverse effect for noncanonical NF-κB activation. Indeed,
overexpression of WT Peli1 significantly inhibited p100 proces-
sing to p52, along with promoted Lys48 ubiquitination of NIK. In
contrast, overexpression of Peli1ΔC has no effect on either p100
processing or NIK ubiquitination (Fig. 7a, b), suggesting the E3
ligase activity of Peli1 is critical for its suppressive function on
noncanonical NF-κB pathway. In addition, the primary splenic
KO B cells that reconstituted with WT Peli1 produced much less
antibody like IgM, IgG2a, IgG2b, and IgG3 in response to NP-
KLH immunization, as compared with that reconstituted with
either empty vector (EV) or Peli1ΔC (Fig. 7c). These data pro-
moted us to assume that Peli1 may has therapeutic effect on
lupus-like disease, we then injected the retrovirus encoding WT
Peli1 or Peli1ΔC into BM12 CD4+ T cells-immunized mice. As
expected, retrovirus encoding WT Peli1 significantly attenuated
the severity of lupus-like disease, as suggested by inhibited IgG
deposition in the kidney, suppressed production of serum auto-
antibodies against dsDNA, ssDNA, and histone, and decreased
frequencies of plasma cells along with unaltered percentages of T
follicular helper (Tfh) cells (Fig. 7d–g). Together these findings
suggested a potential function of Peli1 in the treatment of lupus-
like disease through the inhibition of noncanonical NF-κB
activation.

PELI1 levels negatively correlate with human SLE. Published
study demonstrated that PELI1 polymorphisms is genetically
associated with SLE susceptibility in Chinese population37, we
then collected PBMCs from healthy donors (HD) and SLE
patients to investigate the potential role of PELI1 in regulating B
cell-mediated immune response and SLE pathogenesis. Under
healthy conditions, there are very few antibody-producing plasma
cells detected in HD PBMCs. In contrast, the frequencies of
plasma cells in PBMCs are significantly increased under SLE
pathological condition (P < 0.01, by Student’s t-tests, Fig. 8a, b).
Interestingly, PELI1 mRNA levels in SLE patients are negatively
correlated with the disease activity (Fig. 8c), and individuals with
lower levels of PBMCs PELI1 mRNA are also associated with
higher percentage of antibody-producing CD19−CD138+ plasma
cells and serum IgG levels among SLE patients (Fig. 8d, e).

To dissect the mechanistic role of PELI1 in regulating human
SLE pathogenesis, we conducted gene expression profile analysis
by using PBMCs isolated from SLE-PH and SLE-PL (Fig. 8f). The
volcano plot showed that a large number of genes that reported to
regulate SLE pathology, especially apoptosis-related genes, such as
CD22, BCL-XL, and BCL10, etc., were detected among the
differentially expressed genes in PBMCs between SLE-PH and
SLE-PL (Fig. 8g). In addition, real-time quantitative PCR
confirmed the expression alteration of these apoptosis-related
genes in PBMCs between SLE-PH and SLE-PL (Fig. 8h), which is
consistent with the gene expression profiles in Peli1-deficient B
cells that stimulated by noncanonical NF-κB inducer. Together
these results suggested PELI1 is negatively correlated with human
SLE pathogenesis, which maybe attributed to the alteration of
noncanonical NF-κB activation.

Discussion
Uncontrolled production of pathogenic autoantibodies is the
hallmark of SLE, which centralizes B cells as a key player in the
regulation of this autoimmune disease5–7,38. The noncanonical
NF-κB pathway critically regulates B cell activation and antibody
production. Thus, therapeutic strategies based on the inhibition
of noncanonical NF-κB activation have been applied for the
treatment of SLE. For example, Belimumab, an FDA approved
drug for SLE treatment, is a monoclonal antibody that antag-
onizes the noncanonical NF-κB inducer BAFF8–12. However,

Belimumab exhibits low efficacy for SLE treatment, we reasoned
that it cannot totally blocks noncanonical NF-κB activation, since
non-neutralized CD40L and TACI are also two major inducers
for noncanonical pathway. So, targeting NIK, the master kinase to
activate noncanonical NF-κB pathway, would be an ideal
approach for SLE treatment. In the present study, we identified
the E3 ubiquitin ligase Peli1 directly target NIK and induce its
degradation. As a consequence, Peli1 deficiency specifically pro-
moted mouse splenic B cell proliferation and antibody produc-
tion. In addition, Peli1-deficient mice developed more severe
lupus-like disease along with standard clinical symptoms of SLE.
In human SLE patients, PELI1 low expression in PBMCs was
associated with more severe disease activity and increased pro-
duction of autoantibodies. Thus, here we demonstrated a pro-
tective role of PELI1 in SLE pathology through inhibiting
noncanonical NF-κB activation and B cell antibody production.

Noncanonical NF-κB pathway that activated by BAFF or anti-
CD40 controls B cell survival and activation. NIK is the master
kinase in this pathway that responsible to transduce downstream
signals from BAFFR and CD40, resulting in p100 processing and
p52/RelB translocation into nucleus17,32. Conditional deletion of
NIK in mice resulted in a reduction in mature class-switched B
cells, and NIK inactivation caused a defect in antibody produc-
tion18,19. By using the Peli1-deficient mice, here we found that
Peli1 is a negative regulator of noncanonical NF-κB pathway in B
cells through modulation of NIK levels. Accordingly, Peli1-defi-
cient mice produced more antibodies, especially promoted the
IgG2a class-switch, by NP-KLH immunization. We speculated
that Peli1 may regulate T cell-dependent STAT1 or T-bet acti-
vation, which are both critical for IgG2a class-switch39,40, to
cooperate with noncanonical NF-κB signaling in controlling
IgG2a induction in B cells. It is reported that the accumulation of
NIK is required for TRAF3 degradation41. However, our data
revealed that Peli1 didn’t affect TRAF3 degradation upon sti-
mulation by noncanonical inducers, suggesting a direct regulation
of NIK protein level by Peli1. Indeed, we confirmed that Peli1
directly bound to NIK, and mediated the Lys48-linked ubiquiti-
nation and degradation of NIK.

It is reported that TRAF2-cIAPs is the only previously known
E3 ligase complex that mediate the Lys48 ubiquitination of
NIK23,24,42. In the present study, we identified Peli1 as another
new E3 ligase directly mediated the Lys48 ubiquitination and
degradation of NIK. Peli1 deficiency significantly inhibited signal-
induced Lys48 ubiquitination of NIK and promoted NIK accu-
mulation, along with enhanced noncanonical NF-κB activation.
In addition, Peli1 expression in HEK293T cells led to potent
induction of NIK ubiquitination. As the ubiquitin ligase function
of Peli1 required its C-terminal RING domain, the Peli1ΔC
mutant largely lost its ability to induce NIK ubiquitination. In
addition, it is reported that Peli1 may function as an adaptor that
independent of its E3 ligase activity43, so future studies are nee-
ded to investigate more possible unknown function of Peli1. We
previously demonstrated that Peli1 is required for TLR-induced
cIAPs ubiquitination and activation in microglia29, so it is rea-
sonable to assume that Peli1-mediated NIK ubiquitination maybe
due to the activation of cIAP by Peli1. Interestingly, in vitro
ubiquitination assay suggested a direct function of Peli1 to NIK
ubiquitination in a cell-free system. Moreover, Peli1 knockdown
could further attenuate the NIK ubiquitination even in the
absence of cIAPs, suggesting a specific function of Peli1 in dif-
ferent cell types and in response to different stimuli.

We also observed that the Lys48-linked ubiquitination of NIK
was slightly reduced in the resting Peli1-deficient B cells as
compared with WT cells, whereas anti-CD40 stimulation dra-
matically impaired the Lys48-linked ubiquitination of NIK in
Peli1-deficient B cells. These results suggested that Peli1 maybe
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not fully activated to function as an E3 ligase for NIK ubiquiti-
nation until upon the stimulation of noncanonical NF-κB indu-
cers. Previous study has identified TBK1 as a critical protein
kinase for Peli1 phosphorylation and activation44, and we have
also suggested that TBK1 is activated in B cells upon the stimu-
lation of noncanonical inducers36. Thus, it is reasonable to
speculate that TBK1 is the key protein kinase that responsible for
the phosphorylation and activation of Peli1, which is then acti-
vated to mediate the Lys48-linked ubiquitination and degradation
of NIK in noncanonical NF-κB signaling.

SLE pathogenesis involves the activation of innate immune
cells, which produce proinflammatory cytokines to mediate the
autoimmune inflammation42,45. We and others previously
reported that Peli1 mediates TLR-induced canonical NF-κB
activation and proinflammatory gene expression in innate
immune cells27,29. Indeed, Peli1 deficiency impairs LPS-induce B
cell proliferation. Additionally, Peli1 is dispensable for BCR-
mediated B cell activation, suggesting increased production of
autoantibodies and B cell activation during SLE pathogenesis in
Peli1-deficient mice is attributing to the promoted activation of
noncanonical NF-κB pathway but not from TLR or BCR signal-
ing. Published study suggested microRNA-155 targets Peli1 to
control the generation and function of Tfh cells46, another
important player during SLE pathogenesis. Considering our
previous data that Peli1 negatively regulates T cell proliferation
and activation by targeting c-Rel ubiquitination28, it is reasonable
to assume that Peli1 may also function in T cells to mediate the
autoimmune inflammation during SLE pathogenesis, and
explains the observed phenotype that the difference of lupus-like
disease between WT and Peli1 global KO mice is more obvious
than that in Rag1-deficient mice transferred with WT T plus WT
or KO B cells.

Our data also provided clinical evidences that PELI1 expression
in PBMCs is negatively associated with SLE disease activity and
the production of autoantibodies, suggested that PELI1 could be
developed as a biomarker for SLE diagnosis. In addition, lower
expression of PELI1 suggested more severe disease activity,
implying worse outcome of SLE prognosis. Moreover, Peli1-
deficient mice developed more severe lupus-like disease, whereas
overexpression of Peli1 significantly inhibited noncanonical NF-
κB activation, which in turn inhibited antibody production and
suppressed lupus-like disease. Thus, enhancing PELI1 expression
could be a potential therapeutic strategy for SLE treatment.

In summary, our work establishes Peli1 as a mediator of
noncanonical NF-κB activation in B cells and SLE pathogenesis.
Based on our data, we propose a model in which Peli1 function as
an E3 ligase to directly mediate Lys48 ubiquitination and
degradation of NIK, thereby restricting the activation of non-
canonical pathway and autoimmune inflammation in lupus-like
disease (Supplementary Fig. 6). Since accumulating evidences
suggest the critical function of noncanonical NF-κB signaling in
various diseases like SLE, therapeutic strategies by targeting Peli1
maybe beneficial for the treatment of related diseases.

Methods
Patients samples. Fifty-three adult female health donors (HD) and 51 adult
female SLE patients who met the American College of Rheumatology revised cri-
teria for SLE were enrolled. All HD or SLE patients’ samples were used after written
informed consent was obtained. PBMCs isolated form HD or SLE patients’ blood
samples were subjected to flow cytometry, immunoblot and real-time quantitative
PCR analysis. The clinical disease activity was assessed according to the SLE
Disease Activity Index (SLEDAI).

Mice. Peli1-defcient mice (on a C57BL/6 background) were provided by Dr. S.
Sun27 (The University of Texas M.D. Anderson Cancer Center, Houston, TX).
Peli1+/− mice were bred to generate Peli1−/− (KO) and Peli1+/+ (WT) mice,
which were used in the experiments. BM12 transgenic mice and μMT mice were

provided by Dr. N. Shen47 (Shanghai Institutes for Biological Sciences, Chinese
Academy of Sciences). Rag1−/− mice (NM-KO-00069) were purchased from
Shanghai Model Organisms Center. All mice were maintained in a specific
pathogen–free facility, and were sacrificed by cervical dislocation for animal
experiments, and all animal procedures were approved by the institutional Bio-
medical Research Ethics Committee, Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences.

Plasmids and reagents. The plasmid pcDNA-HA-Peli1/Peli1ΔC, pcDNA-HA-
Traf3, pcDNA-HA-cIAP2, pcDNA-Flag-NIK, PRV-Peli1/Peli1ΔC, pLKO.1-
shPeli1, pGIPZ-shNIK were provided by Dr. S. Sun27–29,36. The Myc-USP2 plasmid
was provided by Dr. B. Li48. The anti-Peli1 (F-7, SC-271065), anti-Peli1-HRP (F-7,
SC-271065 HRP), anti-p100/p52 (C-5, SC-7386), anti-RelB (C-19, SC-226), anti-
Traf2 (C-20, SC-876), anti-Traf3 (H-122, SC-1828), anti-lamin B (C-20, SC-6216),
and anti-Ubi (P4D1, SC-8017) were purchased from Santa Cruz Biotechnology.
Anti-actin (AC-74, A2228) and anti-Flag (M2, F3165) were purchased from Sigma.
Anti-cIAP2 was purchased from R&D System. Anti-Lys48 ubiquitin (051307) was
purchased form Millipore. Anti-mouse CD40 (553788) was from BD Biosciences.
BAFF (phc1674) was from Biosource. NP-Ficoll (F-1420), NP-KLH (N-5060), and
NP-LPS (N-5065) were purchased from Biosearch Technologies. FITC conjugated
anti-CD21 (8D9, 11-0211-82), PE conjugated anti-CD23 (B3B4, 12-0232-82), PB
conjugated anti-IgM (eB121-15F9, 48-5890-82), APC conjugated anti-IgD (11-26c,
17-5993-82), PE-cy7 conjugated anti-CD19 (1D3, 25-0193-82), PE conjugated anti-
CD138 (Syndecan-1, 142504), PB conjugated anti-GL-7 (48-5902-82), APC con-
jugated anti-Fas (15A7, 17-0951-82), PE conjugated anti-human CD138 (DL-101,
12-1389−42), FITC conjugated anti-human CD19 (SJ25-C1, 11-0199−42), and
anti-mouse LTβ (3C8, 165671-82 for MEF stimulation) were purchased from
eBioscience. Mouse CD4 (L3T4, 130-049−201) and CD45R (B220, 130-049-501)
MicroBeads were purchased from Miltenyl Biotec. Smac mimetic BV6 (HY-16701)
was from MCE. MG132 (C2211) and LPS (L3129) were from Sigma. The anti-IgM
(115-006-075 for B cell stimulation) were from Jackson ImmunoResearch.

Cell culture. The human embryonic kidney 293 T cells29 was cultured with DMEM
containing 10% FBS. Cells were seeded in six-well plates and were transfected by
the LipoFiter method. The mouse M12 cells (M12.4.1)35 were cultured with RIPM
medium supplemented with 10% FBS. To prepare Peli1+/+ and Peli1−/− primary
MEFs, Peli1+/− mice were bred to generate Peli1+/+ and Peli1−/−embryos. At day
13.5 embryos from the same pregnant female were used to prepare MEFs. The cells
were cultured in DMEM supplemented with 10% FBS. Primary B cells were iso-
lated from the splenocyte samples by anti-B220-conjugated magnetic beads (Mil-
tenyl Biotec) and cultured in RIPM medium supplemented with 10% FBS. For B
cell proliferation assay, 105 B cells were seeded in 96-well plates with 3 replicates
and then stimulated for a total 72 h by various agents. After stimulation, B cells
were labeled with [3H]thymidine 8 h before examination.

Mouse immunization and antibody detection. Age (6–7 week) and sex-matched
WT and Peli1-KO mice were immunized with 4-hydroxy-3-nitrophenylacetyl
(NP)-keyhole lympet hemocyanin (KLH), NP-Ficoll or NP-LPS (100 μg for each
antigen). After 0, 7, 14, or 21 days later, the sera were collected and analyzed by
enzyme-linked immunosorbent assay (ELISA). To generate a lupus-like disease
mouse model, 7.5 million of purified CD4+ BM12 T cells were intraperitoneally
injected into recipient mice. Sera were collected at the indicated time points to
examine anti-dsDNA, anti-ssDNA, and anti-histone antibodies by ELISA. Hep-2
cells were used to detect anti-nuclear antibodies. Formalin-fixed frozen mouse
kidney sections were stained with Alexa Fluor 488-conjugated goat anti-mouse IgG
(Invitrogen). Antibody staining was detected using a fluorescent microscope
(ZEISS).

BM chimera. We adoptively transferred lethally irradiated (137Cs, γ-ray, 950 rad)
μMT mice (6–8 weeks old) with the mixed BMs from μMT mice and Peli1 WT/KO
mice (μMT: Peli1 WT/KO= 5: 1). Under these conditions, μMT mice BM will
provide all the genetic-competent immune cells except for B cells, and Peli1 WT/
KO mice BM will provide the Peli1-competent or Peli1-deficient B cells. After
8 weeks, the chimeric mice were intraperitoneally immunized with 100 μg NP-KLH
or CD4+ BM12 T cells as described above.

Adoptive transfer. Purified WT or Peli1-KO B cells mixed with WT naïve T cell
were transferred into Rag1-deficient mice intravenously. Twenty-four hours later,
the bmice were intraperitoneally immunized with 100 μg NP-KLH or CD4+ BM12
T cells as described above.

Peli1 or NIK knockdown and Peli1 reconstitution. HEK293 cells were transfected
with pLKO.1-shCtrl, pLKO.1-shPeli1, pGIPZ-shCtrl, or pGIPZ-shNIK along with
packaging vectors pMD2 and psPAX2. The lentiviral supernatants were collected
48 h later and used for M12 cell or primary B cell infection and subsequent
selection (puromycin for Peli1 knockdown, GFP for NIK knockdown) as described
previously36. For Peli1 reconstitution, pRV-GFP retrovirus encoding Peli1 or
Peli1ΔC were used to transduced Peli1-deficient primary B cells or M12 Peli1-
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knockdown cells. The infected cells were then enriched by flow cytometric sorting
on the basis of GFP expression.

Immunoblot and ubiquitination assay. Purified B cells and M12 cells were left
unstimulated or stimulated for appropriate time by anti-CD40 or BAFF. Total or
subcellular extracts were prepared for immunoprecipitation or immunoblot ana-
lysis with specific antibodies.

For in vivo ubiquitination assays, the B cells were pretreated with MG132 for 1
h and left unstimulated or stimulated with anti-CD40 for 4 h, and then were lysed
with cell lysis buffer containing protease inhibitor and N-ethylmaleimide. The cell
extracts were boiled for 5 min in the presence of 1% SDS to dissociate the NIK-
interacting proteins, and then were diluted with lysis buffer till the concentration of
SDS was 0.1% before immunoprecipitation. NIK was then immunoprecipitated
from the cell extracts and the immunoprecipitates are immunoblotted with anti-
ubiquitin or anti-Lys48 ubiquitin antibody.

For in vitro ubiquitination assay, Flag-NIK, HA-Peli1, and HA-Peli1ΔC were
translated in vitro with the TNT® Quick Coupled Transcription/Translation
Systems (Promega). Ubiquitination reactions were processed with Ubiquitinylation
kit (ENZO) according to the manufacturer’s instructions. After 4 h of incubation at
37 °C, the reactions were terminated by boiling for 5 min in SDS sample buffer. The
samples were subjected to SDS-PAGE, and followed by immunoblot analysis to
examine Lys48 ubiquitination of NIK.

EMSA and supershift assay. Nuclear extracts were prepared and subjected to
EMSA analysis with a biotin-labeled control probe bound by NF-Y (5′-AAGA-
GATTAACCAATCACGTACGGTCT-3′) or a κB oligonucleotide probe (5′-
CAACGGCAGGGGAATTCCCCTCTCCTT-3′), by using the LightShift® Chemi-
luminescent EMSA Kit (Thermo). For supershift analysis, 2 μl of antibody against
p52 or RelB was added to the nuclear extract 15 min before the labeled probe was
added.

Flow cytometry. Single-cell suspensions were stained with antibodies against
different cell surface markers, followed by incubation for 25 min on ice, and then
the cells were resuspended in PBS with 2% FBS for flow cytometry analysis. For the
gating strategy, FSC/SSC is initial applied, and then used the antibodies with
specific fluorochrome to make the subsequent gates. All the samples in the same
experiments and comparisons were gated under the same parameters.

RNA-sequencing analysis. PBMCs isolated from female HD or SLE patients (with
high or low Peli1 expression) were applied for total RNA extraction with TRIzol
(Invitrogen) and subjected to RNA-sequencing analysis. RNA sequencing was
performed by BGI Tech Solutions. The raw reads were mapped to the mm10
reference genome (build mm10), using Bowite. Gene expression levels were
quantified by the RSEM software package. The significantly affected genes were
acquired by setting a fold change ≥2 and a false discovery rate threshold of 0.001.
Differentially expressed genes were analyzed by the IPA and DAVID bioinfor-
matics platform.

Quantification and statistical analysis. Except where otherwise indicated, all the
presented data are representative results of at least three independent repeats. Data
are presented as mean ± SEM, and the P-values were determined by two-tailed
Student’s t-tests. A P-values less than 0.05 is considered statistically significant.

Data availability. The RNA-Sequencing data have been deposited into the Gene
Expression Omnibus (accession code GSE101437). Source data files for Fig. 8 are
available online. All other data supporting the findings of this study are available
from the corresponding author on reasonable request.
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