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Highlights:

· A new extraction chromatographic material containing trioctylphosphine oxide is developed for 

actinide recovery

· The ability of this material to selectively recover actinides potentially acidic Hanford radioactive 

waste is demonstrated

· The column kinetics are significantly improved when n-dodecane is co-coated with the 

trioctylphosphine oxide
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1 Remediation of Potentially Acidic Hanford Wastes 

2 using Tri-n-octyl Phosphine Oxide Extraction 

3 Chromatographic Materials

4 Jenifer C. Shafer�, Jana Sulakova§, Mark D. Ogden�, Kenneth L. Nash*

5 Chemistry Department, Washington State University, Pullman, WA USA

6 ABSTRACT: As the Hanford site undergoes remediation, significant economies could be 

7 realized if aluminum and chromium are kept from High Level Waste glass produced at the 

8 Hanford Waste Treatment Plant (WTP).  An acidic scrub of the Hanford sludge could enhance 

9 Al removal, although such treatment could lead to the mobilization of transuranic elements.  If 

10 mobilization were minor, a chromatographic secondary cleanup of the acidic waste stream may 

11 be preferred to allow preconcentration of radionuclides prior to processing through the Hanford 

12 WTP.  This study examines tri-n-octyl phosphine oxide coated resins as a chromatographic 

13 means for the removal of transuranics from a secondary waste stream.  Metal uptake kinetics and 

14 mechanisms for transuranics and a simulant transuranic (europium) with the developed resin are 

15 characterized in both batch and column operation modes.  Results indicate up to 99% of the 

16 radioactive material present from an acidic sludge leach may be recovered using extraction 

17 chromatography providing an effective avenue for high aluminum content tank pre-treatment.
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18 INTRODUCTION

19 The U.S. Department of Energy (DOE) is responsible for environmental remediation at former 

20 nuclear weapons production sites. The Hanford Site, in south central Washington state, was the 

21 first facility to produce plutonium for nuclear weapons.  Three plutonium separations methods 

22 were used during the operation of the Hanford site: Bismuth Phosphate (1945-1956), Redox 

23 (1951-1959) and PUREX processes (1956-1972; 1983-1989).1 The use of multiple plutonium 

24 separations and mixing wastes between tanks helped to create a complex waste matrix. As a 

25 result, Hanford site remediation is one of the most labyrinthine challenges faced by the 

26 Department of Energy.  Both the volume and composition of waste resulting from Pu production 

27 are major remediation concerns.2 The most problematic waste component is the sludge created 

28 by the caustic environment of the tanks.  

29 The under construction Hanford Tank Waste Treatment and Immobilization Plant (WTP) is the 

30 cornerstone of the tank waste remediation e�ort.  Full radioactive operations are scheduled to 

31 begin in 2019. The current design of the WTP may not be able treat and immobilize the Hanford 

32 tank wastes in the expected lifetime of the plant. Consequently, DOE has been pursuing 

33 alternative treatment options for selected wastes.   If implemented, alternative treatments could 

34 expedite the sludge dissolution process and improve throughput of the WTP, thereby 

35 accelerating the overall Hanford tank waste remediation mission.  

36 Remediation treatments efforts have focused on caustic leaching to remove problematic 

37 nonradioactive elements aluminum and chromium.  Aluminum contributes significantly to the 

38 volume of waste processed and the precipitation of chromium spinels from the HLW could short 

39 the heating electrodes, clog the pour spout, or otherwise jeopardize the operation and life of the 

40 glass melter.3  Removal of Al and Cr would decrease waste volume, lengthen the lifetimes of the 
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41 vitrification furnace and improve stability of the vitrified high level waste (HLW) glass matrix. 

42 While not addressed here, the possibility of removing phosphate as an additional pretreatment 

43 has also been considred.4,5 While caustic leaching has proven to have some value, the most 

44 stubborn Al phase, boehmite (γ-AlO(OH)), has been resistant to this treatment regimen.

45 As an alternative, the possibility of using acid/base wash cycles for enhanced alumina removal 

46 through surface activation/freshening has been considered. An undesirable side effect of acidic 

47 leaching is the potential mobilization of radioactive species into the Al/Cr waste stream.6  If 

48 acidic leaching were to be performed, knowledge of how to remove radioactive species, 

49 predominantly actinides, from aqueous media of variable HNO3 and Al(NO3)3 concentrations 

50 and chromium oxidation states would be required.  Previous studies have shown solvent 

51 extraction (SX) with 60% by volume (v/v) (TBP) or 0.1 M tri-n-octyl phosphine oxide (TOPO) in 

52 n-dodecane from nitric acid aqueous media to be a complementary and effective means of 

53 handling the secondary cleanup.7,8 If the solubilization of actinides is low, preconcentration may 

54 be desired.  An extraction chromatographic remediation could serve to complement the solvent 

55 extraction efforts.  Extraction chromatographic materials using TBP have also shown to provide 

56 reasonable decontamination of transuranics when high concentrations of nitrate are present, but 

57 lower concentrations of nitrate require a more basic extractant for recovery of the trivalent 

58 actinides.9

59 In this work, a bench scale exploration of a TOPO EXC system for the separation of U, Th, 

60 Np, Pu and Eu (serving as a surrogate for the trivalent actinides) from Al/Cr leachate solutions 

61 that could emerge if one were to attempt nitric acid leaching with Al-bearing solids has been 

62 developed. The “ambient” oxidation state of tracer levels of Np and Pu is defined through 

63 comparisons of Np/Pu partitioning with redox stable actinides (Th4+ and UO2
2+).  The 
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64 polyacrylic XAD7 resin was used as the solid support for extractant immobilization as previous 

65 studies have shown the XAD7 resin to successfully retain TOPO for the purposes of metal 

66 uptake.10,11 Correlations between solvent extraction chemistry, batch mode extraction and 

67 column separations are compared to previous work in this area and with each other.  

68

69 EXPERIMENTAL SECTION

70 Materials and Instrumentation

71 All aqueous solutions were prepared from analytical grade reagents and ultrapure (18 M ) 

72 deionized H2O.  Solution density was determined by using a calibrated one mL pipette and 

73 weighing the aliquot at room temperature.  Nitric acid solutions were prepared by mass using 

74 Fischer Scientific concentrated (15.8 M) HNO3 solution.  Sodium hydroxide solutions were 

75 prepared from dilutions of 50% w/w NaOH (Alfa Aesar) and standardized by titration of 

76 potassium hydrogen phthalate to a phenolphthalein end point.  Solutions of K2CrO4 and 

77 Al(NO3)3 were prepared by mass using analytical grade J.T. Baker solids.  The L-ascorbic and 1-

78 hydroxyethane 1,1-diphosphonic acid (HEDPA) solutions were prepared by mass from Fisher 

79 Scientific ACS certified reagents and Alfa Aesar, respectively. TOPO (>99%, Sigma Aldrich) 

80 was used without further purification and was diluted volumetrically using methanol.  Amberlite 

81 XAD-7 (Rohm & Hass) was treated as described in the following section.  

82 Experiments using 152/154Eu, 237Np, 233UO2, 238UO2,238Pu, and 232Th nitrates were conducted by 

83 dilution of standardized stocks from the Washington State University (WSU) radioisotope 

84 inventory.  Experiments using stable Eu(NO3)3 were prepared by dilution of standardized stocks.  

85 Radioactive 152/154Eu was created by neutron activation of 99.999% Eu2O3 (Arris International) 

86 using a Teaching, Research, Isotopes General Atomics (TRIGA) reactor with a neutron flux of 
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87 5×1012 n/cm2·sec at the Nuclear Radiation Center at WSU. Radiotracer experiments 

88 using152/154Eu were analyzed on a NaI(Tl) solid scintillation counter (Packard Cobra-II auto 

89 gamma) for gross gamma counting.  Radiotracer experiments using 233U, 237Np and 238Pu were 

90 analyzed using a Beckman LS6500 liquid scintillation counter for alpha detection with 5 mL of 

91 EcoScint® scintillation fluid.  Light metals analysis (Cr, Al) and heavy metal analysis (238U, 

92 232Th) was done using a Perkin Elmer Optima 3200 RL ICP-OES instrument and an Agilent 

93 4500+ ICP-MS, respectively.  Mixing was done using a VWR mini vortexer and mass 

94 measurements were obtained using a Mettler Toledo XS105 Dual Range series analytical 

95 balance.  

96

97 Resin Preparation

98 Amberlite XAD7 resin is a polyacrylic resin with a 20-60 mesh particle size and a surface area 

99 of 450 m2/g.  Acidic impurities were removed with a DI water rinse until a neutral pH was 

100 obtained.  Resin drying was expedited by methanol (MeOH) addition and removal, followed by 

101 placement in an oven at 80°C for at least an hour.  Dried resin was removed from the oven, 

102 allowed to cool in a vacuum dessicator, weighed and contacted for 15 minutes by vigorous 

103 shaking with  1 M TOPO in MeOH with excess coating solution.  Excess solution after contact 

104 was removed and the coated resin was dried at 80°C overnight.  The amount of extractant 

105 loading to the resin is defined in this work as the ratio of mass of organic extractant present to 

106 the total final mass of the extractant loaded resin.  This coating process provided 58 wt%.  For 38 

107 wt% resin, dried resin was contacted in a ratio of 1.05 g XAD7 : 1.75 g TOPO in excess 

108 methanol.
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109 The rate of metal uptake onto TOPO-XAD7 resin was determined to be significantly slower 

110 than comparable solvent extraction systems.  To encourage faster metal uptake kinetics, the 

111 TOPO-XAD7 resin was wetted with n-dodecane (abbreviated TOPO-XAD7n) using a 50% v/v 

112 chloroform/n-dodecane solution.12   The 58% and 38% TOPO-XAD7 resins were wetted with 

113 100 and 160 !L of the chloroform/n-dodecane mixture providing dissolution of 30% and 53% of 

114 TOPO on the resin surface, respectively.  Wetting ratios were selected to minimize the presence 

115 of excess n-dodecane and potential loss of TOPO from the resin during the wetting process.  

116 Wetting the chromatographic material produced 46% and 24% TOPO-XAD7n resins.  Assuming 

117 a density of 1 g/mL, which is generally consistent with the literature,13 the concentration of 

118 TOPO for the 46% and 24% wetted resin is 1.33 and 0.75 M, respectively.  

119

120 Extraction in Batch Experiments

121 All batch extractions were performed in triplicate and the errors presented denote a ±1σ 

122 standard deviation of the triplicate analysis.  The weight distribution ratio of the analyte, Dw 

123 (mL· g-1), was calculated according to the following equation:

124                                (1)
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125 where Ao and As are the aqueous phase activity (counts per minute) before and after equilibration, 

126 m the mass of resin (g) and V the volume of the aqueous phase (mL). For radiotracer 

127 experiments, triplicate experiments showed the reproducibility of the distribution measurements 

128 was generally within 10%, although the uncertainty interval was somewhat higher for the highest 

129 distribution values (Dw≥ 103) due to a lack of discernible activity in the aqueous phase.  When 

130 possible, weight distribution values (Dw) were corrected for nitrate complexation in the aqueous 
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131 phase, as done previously, to provide the corrected weight distribution ratio, Dwo.7,8  The ratio of 

132 solution volume to resin was kept at 10 ml/g.

133

134 Eu3+ Partitioning

135 For 152/154Eu extraction experiments with TOPO-XAD7, the aqueous phase contained various 

136 amounts of HNO3, Al(NO3)3, Cr(III/VI), and Eu(III).  Chromium and ascorbic acid 

137 concentrations were maintained at 1 mM and 3 mM, respectively.   Europium uptake from 

138 varying HNO3 in the presence of constant Al(NO3)3 and constant HNO3 with varying Al(NO3)3 

139 was studied. Non-radiotracer europium was present at 1 mM to highlight the macroscale uptake 

140 capabilities of the TOPO resin.   Phases were contacted for 20 minutes by vigorous shaking and 

141 aliquots of the aqueous phase were obtained.  Analysis for 152/154Eu in the aqueous phase was 

142 performed as described previously.

143

144 Actinide Partitioning 

145 Batch investigations were performed for 238U, 232Th, 237Np and 152/154Eu at tracer 

146 concentrations (<10-5 M).  The concentration of Al(NO3)3 varied between 0.01 and 1 M while 

147 maintaining constant concentrations of HNO3.  Actinide distribution investigations examined a 

148 variety of chromium oxidation state conditions and are detailed in the results for a given set of 

149 studies. All contacts were for 20 minutes.  Aliquots of the aqueous phase were obtained.  

150 Analysis for 238U, 232Th and 237Np in the aqueous phase was performed as described above.

151

152 Isotherm Determination



8

153 Isotherms were generated by monitoring Eu3+ or UO2
2+ partitioning while increasing the 

154 concentrations of Eu3+ or UO2
2+ from 0.01 mM until the resin was sufficiently saturated.  

155 Hypothetical tank conditions of 0.25 M Al(NO3)3 and 0.1 M HNO3 were used.  Macro 

156 concentrations of Eu3+ and UO2
2+ were provided through the use of stable 151/153Eu and longer-

157 lived 238U. These were additionally spiked with 152/154Eu or 233U.  All contacts were for 30 

158 minutes.

159

160 Column Experiments

161 All column experiments were done with 0.1 M HNO3 and 0.25 M Al(NO3)3 to ensure batch 

162 mode isotherm results could be directly correlated with column experiments. Some elution 

163 volumes are described in terms of bed volume (indicating the packed column volume).  Columns 

164 were Biorad® 1.27 BV PTFE. Columns were weighed before and after column packing with 

165 extraction material to provide the mass of the resin used.

166 The free column volume was determined by extracting a mixed 0.1 M HNO3/0.25 M Al(NO3)3 

167 solution into the resin-loaded column.  The solution was expelled from the column and weighed.  

168 The density of nitric acid/aluminum nitrate solution was determined to be 1.032 ± 0.003.  Using 

169 the expelled mass and the known density, the free column volume was determined (0.42 ± 0.02 

170 mL).  Fractions were collected using a Biorad® 2120 series fraction collector.  All aliquots were 

171 weighed prior to analysis to quantify fraction size.  

172

173 Dynamic Capacity Determination 

174 Breakthrough curves were obtained for 58% TOPO/XAD7, 46% TOPO/XAD7n and 24% 

175 TOPO/XAD7n systems for Eu3+ with initially 1 mM Cr(VI) and 3 mM ascorbic acid present in 
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176 solution.  Europium concentrations and flow rates may be found in Table 1, which also contains 

177 experimental results.  The 24% TOPO/XAD7n system had the quickest uptake kinetics and 

178 additional breakthrough curves were performed with 1 mM Cr(VI) and 50 mM Eu3+ or UO2
2+.

179

180 Metal Elution

181 The elution studies were done under similar conditions used for dynamic capacity 

182 determinations.  Values from the dynamic capacity determination were used to calculate the Eu3+ 

183 and UO2
2+ stoichiometries under high loading conditions.  Flow rates were 50 µL/min for all 

184 studies.    A 3 BV rinse, 3.81 mL, was done after column loading using a mixed 0.001 M 

185 HNO3/0.75 M Al(NO3)3 solution.  Analyte elution was accomplished as detailed for each 

186 experiment.  Neptunium and plutonium elution curves had the same load and rinse volumes as 

187 the uranium experiments, but only included tracer concentrations of actinides.  

188

189 RESULTS

190 Batch Experiment

191 Metal Partitioning

192 Figure 1 presents Eu3+ distribution data as a function of the total, aqueous nitrate concentration 

193 for the TOPO-XAD7 resin.  Extraction behavior was determined as a function of increasing 

194 Al(NO3)3 concentration (0.01 M – 1.50 M) at three constant concentrations of HNO3 (Figure 1a), 

195 and also for varied concentrations of HNO3 (0.01 M – 1.50 M) at two constant concentrations of 

196 Al(NO3)3 (Figure 1b).  All distribution data are corrected for complexation of europium by 

197 nitrate in the aqueous phase.   Corrections for the presence of Eu(NO3)2+ in comparable media 

198 have been previously derived.7,8
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199

200 Figure 1.  Nitric acid or aluminum nitrate dependences for europium nitrate adsorption into 58% 
201 TOPO-XAD7 resin.   Lines are provided with slopes (m) indicate the dependence of metal 
202 extraction on nitrate concentration.  Initially present in each aqueous solution was 1.0 mM 
203 K2CrO4 and 3 mM ascorbic acid. a) Aluminum nitrate varied from 0.01 to 1.5 M,  0.01 M 
204 HNO3  0.10 M HNO3 ▲1.00 M HNO3.  b) Nitric acid varied from 0.01 to 1.5 M,  0.01 M 
205 Al(NO3)3  0.1 M Al(NO3)3

206

207 The partitioning of Eu3+ into the TOPO-XAD7 resins from solutions of constant HNO3 

208 concentrations increased significantly with increasing concentrations of Al(NO3)3 (Figure 1a).   

209 The highest distribution observed was at [HNO3] = 0.01 M and [Al(NO3)3] = 1.5 M.  The 

210 partitioning of Eu3+ between the TOPO-XAD7 phase from solutions of constant Al(NO3)3 

211 concentrations with increasing concentrations of HNO3 (Figure 1b) increased.  A maximum in 

212 Eu3+ recovery was seen at [HNO3] = 0.25 M and [Al(NO3)3] = 0.1 M.  A steep decrease, with an 

213 approximate slope of -1.6 on the log-log plot, is observed after this maximum.  

214 Figure 2 shows the uptake of Th, U, Np, and Eu at tracer concentrations as a function of 

215 Al(NO3)3 concentration by TOPO-XAD7 resin.  The uptake studies of Th4+, UO2
2+ and Eu3+ 

216 served to model the distribution behavior of An4+, AnO2
2+, and An/Ln3+ cations, respectively. 

217 Comparing uptake behavior between redox active (Np) and redox inactive actinides/lanthanides 
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218 (UO22+, Th4+, Eu3+) allows an approximation of the anticipated redox state of Np in the sludge 

219 simulants for both potentially oxidizing and reducing conditions.  

220

221

222 Figure 2. Metal distribution values as a function of aqueous [Al(NO3)3] with [HNO3] equal to a) 
223 0.01 M b) 0.1 M and c) 1 M.  The various elements and redox conditions described as follows:  
224  Th4+  UO2

2+▲ Eu  Np  Np, 1 mM CrO4
2-  Np, 1 mM CrO4

2-, 3 mM ascorbic acid. Solid 
225 phase: 100 mg TOPO-XAD7.   

226

227 Isotherm Determination

228 Figure 3 compares Eu isotherms of the 58% TOPO-XAD7, 46% TOPO-XAD7n systems and 

229 24% TOPO-XAD7n resins.  The data were fit with the ORIGIN® software package using a linear 

230 least squares statistical treatment for the Langmuir isotherm model, Equation 2, 

231                                                                                                   (2)��
�
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232 where equilibrium concentrations of analyte in the liquid and solid phase, c and q, respectively, 

233 were calculated from Equations 3 and 4;
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236 aL is the Langmuir constant (dm3·mmol-1), Ce is the concentration of analyte in the aqueous 

237 phase, qmax is the maximum mole of analyte sorbed to the resin per gram under static conditions, 

238 m is the mass of the resin, V is the volume of aqueous phase, Ao is the initial activity in the 

239 aqueous phase (cpm), A is the final activity in the aqueous phase after equilibration, and Co is the 

240 initial concentration of analyte in the aqueous phase, KL is the Langmuir constant in dm3·g-1.  

241 The calculated saturation stoichiometry of the 24% TOPO-XAD7n resin is 1:3.5 (Eu:TOPO),  

242 indicating a mixture of 1:4 and 1:3 complexes in the solid phase.  

243

244 Figure 3. Isotherms comparing the uptake behaviors of europium by the 58% TOPO-XAD7, 
245 46% TOPO-XAD7n and 24% TOPO-XAD7n resin.  Uranium isotherm is also shown for the 
246 38% TOPO-XAD7n resin.  Initial aqueous phase: 0.1 M HNO3, 0.25 M Al(NO3)3, 1 mM 
247 K2CrO4, 3 mM Ascorbic Acid. Solid phase: 50 mg of the appropriate resin.

248

249 Dynamic (Column) Experiments

250 Practical Dynamic Capacity

251 Determination of the practical dynamic capacity (Q(m)), the maximum number of mmol of 

252 analyte per gram of resin under dynamic conditions, was calculated using Equation 5, where m is 
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253 the mass of the solid, c0 is the initial concentration of analyte, Vo is the free volume of the column 

254 and V(50) is the volume of solution eluted at 50% breakthrough. 

255        (5)0
050
c

m

V)V(
=Q(m)

s

�
�

256 Under equilibrium conditions, the determined saturating concentration of analyte in the solid 

257 phase should be within error for breakthrough curves (Q(m)) and isotherms (qmax).  Table 1 has a 

258 summary of the qmax and Q(m) values obtained for systems of interest.

259 Table 1. Extraction characteristics for various TOPO-XAD7 n-dodecane wetted resins.

Eu3+ UO2
2+

% TOPO (m/m) 46% 24% 38% 24% 

Redox Conditions 1 mM Cr(III)/

3 mM AAa

1mM Cr(III)/

3 mM AAa

1mM Cr(VI) 1mM Cr(VI)

qmax(mmolEu/g resin) 0.308 ± 0.008 0.176 ± 0.003 - 0.51 ± 0.01

Q(m) (mmolEu/g resin) 0.299 ± 0.009 0.172 ± 0.002 - 0.50 ± 0.02

Flow Rate (µL/mL) 50 50 - 50

D 1200 350 - 640

% recovery 98.3 ± 0.1 99.9 ± 0.3 99.2 ± 0.2 99.7 ± 0.2

Eluent 3 M HNO3 3 M HNO3 3 M HNO3 0.1 M HEDP

Stoichiometryb 1:4 1:3.5 - 1:1

260 aAA =  Ascorbic Acid
261 bIs expressed in the ratio metal : ligand
262

263 Figure 4 shows Eu breakthrough curves for all materials examined.  Saturating conditions are 

264 equivalent (i.e. qmax = Q(m); within error) for the 46% TOPO-XAD7n and 24% TOPO-XAD7n 

265 isotherms and breakthrough curves.  Solvation of TOPO in n-dodecane made the use of higher 

266 flow rates possible (up to 50 !L/mL).  A higher flow rate (100 µL/min) led to a decrease in the 

267 practical dynamic capacity; indicating the system was no longer at equilibrium.  
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268 To examine the ultimate remediation capabilities of the 24% TOPO-XAD7n resin for 

269 simulated Hanford waste, a simulated waste stream containing 1 mM K2CrO4 and tracer 

270

271 Figure 4. Breakthrough curves comparing the column saturation behaviors of europium by the 
272 46% TOPO-XAD7n and 24% TOPO-XAD7n resin.  Uranium behavior is also shown for the 
273 24% TOPO-XAD7n resin.  Aqueous Phase: 0.1 M HNO3, 0.25 M Al(NO3)3, 1 mM K2CrO4, 2 
274 mM Ascorbic Acid. Metal concentration was 50 mM except for breakthrough curve using 46% 
275 TOPO-XAD7n resin with a 10 µL/min flow rate, which used 30 mM metal.

276 152/154Eu, 233U, 237Np and 238Pu, simultaneously, was loaded, the resin washed with 0.01 HNO3 

277 and 0.75 M Al(NO3)3, and material sequentially eluted with 3 M HNO3 and 1 mM KBrO3 to 

278 recover Eu, then 0.1 M HEDPA and 1 mM KBrO3 to recover the actinides.  The addition of 

279 potassium bromate ensured oxidation of Np and Pu to their hexavalent states in the absence of 

280 chromate.  Figure 5 shows the semi-logarithmic elution curves obtained for the simulated waste 

281 experiment.  
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282

283 Figure 5. Loading and elution of U, Pu, Np and Eu by 24% TOPO-XAD7n column from 
284 simulated waste stream containing 1mM K2CrO4, 0.1 M HNO3 and 0.25 M Al(NO3)3 shown on a 
285 semi-log scale to allow viewing of column tailing. Elution of Eu was performed using 3 M 
286 HNO3 and 1 mM KBrO3 to retain Np and Pu in the hexavalent state in the absence of chromate.  
287 Elution of actinides was performed using 0.1 M Etidronic Acid (HEPA) and 1 mM KBrO3.

288

289 DISCUSSION

290 Europium Partitioning

291 The availability of 152/154Eu and its comparable uptake behavior to the lanthanides and the 

292 trivalent actinides for solvating organophosphorus extractants made this isotope an ideal 

293 candidate to screen potential TOPO-XAD7 supports.  For 152/154Eu investigations, the aqueous 

294 phase conditions were similar to previous solvent extraction investigations.[5,6,11]  These 

295 conditions have been selected to represent a wide range of possible solutions that could be 

296 encountered during tank sludge leaching with HNO3 solutions.  For discussion purposes, 

297 oxidizing conditions or reducing conditions are defined as the inclusion of 1 mM K2CrO4 or 1 

298 mM K2CrO4/3 mM ascorbic acid in the aqueous phase, respectively.

299 Europium extraction by the TOPO-XAD7 resin increased as the concentration of Al(NO3)3 

300 increased (Figure 1a).  The negative slope observed on the logarithmic plot of Figure 1b at 
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301 higher nitrate concentrations could be generated by an ion exchange mechanism for Eu3+ uptake.  

302 The conventional extraction mechanism and proposed ion-exchange mechanisms are shown as 

303 Equations 6 and 7, respectively, where n = 3 or 4 and X ≤ 2. Cation exchange uptake 

304 mechanisms by solvating extractants have been proposed previously in the presence of highly 

305 acidic media.14

306
                      

                   (6)x)H(3)OEu(TOPO)(N)TOPO(HNO)Eu(NO 33x-33

x-3

x3

+��®�

307
                   

                 (7)x)H(3)(NOEu(TOPO))nTOPO(HNO)Eu(NO 33nx3-3

x3-

x3

�����

308 Verification of this using slope analysis would require solution activity to be accounted for in 

309 the mixed electrolyte solution. In agreement with previous liquid-liquid extraction studies, 

310 results here indicate higher concentrations of Al(NO3)3 would be preferential to encourage 

311 decontamination of low level leachates.  Extraction increases in the presence of aluminum nitrate 

312 can be related to the decline in water activity allowing more effective release of the Eu3+ to the 

313 organic phase (i.e. salting out).

314

315 Actinide Partitioning with TOPO-XAD7

316 Expectedly, the presence of Al(NO3)3 had a similar “salting out” effect for both actinide and 

317 lanthanide uptake. Modeling of the system with UO2
2+, Th4+, and Eu3+ shows the extraction 

318 preference for the TOPO-XAD7 system is An4+> AnO2
2+> An3+> AnO2

+. This trend can be 

319 directly related to the effective charge, Zeff, which is 4, 3.3, 3, and 2.2 for An4+, AnO2
2+, An3+, 

320 and AnO2
+, respectively.15 The extraction trend demonstrates that electrostatic interactions 

321 dominate chemical interactions of the f-elements with the organophosphorus reagent.  Based on 

322 the uptake results of Th4+
, Np4+ does not appear to be significantly present in any of the potential 

323 waste conditions. Plutonium is expected to be in the trivalent state16 in solutions containing 
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324 ascorbic acid and in the hexavalent state for oxidizing conditions.17 The redox speciation of Np 

325 in high ionic strength media and dilute nitric acid is relatively unknown. An additional 

326 complication is that chromate and neptunium can be reduced and oxidized, respectively, by trace 

327 nitrate impurities.18-20

328

329 Neptunium Chemistry

330 Neptunium redox chemistry produced more nuanced uptake patterns for neptunium in contrast 

331 to the other redox stable f-elements. Redox potentials in Table 2 indicate that the reducing 

332 capability of ascorbic acid for Np decreases with decreasing pH.21 Chromate is also more readily 

333 reduced to chromium (III) at lower pHs.  Pourbaix predominance diagrams note that hexavalent 

334 neptunium will reduce to the pentavalent state in aqueous media when acidic concentrations are 

335 below 0.01 M due to water stability issues and that both tetravalent and hexavalent oxidation 

336 states are stable under higher acid conditions.24  These parameters frame an explanation for 

337 neptunium redox speciation and subsequent uptake by the TOPO-XAD7 resin.  Later studies 

338 could additionally consider the redox speciation of plutonium, which generally has richer redox 

339 chemistry than neptunium.

340 At low acid concentrations (0.01M), neptunium distribution is comparable for systems without 

341 chromium and with reduced chromium (courtesy ascorbic acid) – indicating that NpO2
+ is the 

342 predominant neptunium species present in solution.  Neptunium in contact with chromate is at 

343 least partially oxidized, as indicated by better extraction, but uptake is not comparable to UO2
2+, 

344 the stable hexavalent actinide model.  This is probably related to water stability issues identified 

345 on the Pourbaix predominance diagram limiting Np oxidation and extraction.

346
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347 Table 2. Neptunium redox reaction significant to understanding simulated acidic aqueous 
348 raffinate of the Hanford tanks.19,20,22

Reaction Eo(V)

O2HNpe4HNpO 2

4

2 ���� ���� 0.567

��� �� 2

2

2 NpOeNpO 1.236

OHHNO2e3HNO 223 ���� ��� 0.94

 !  ""#"" 3HNONpOOHHNONpO 3222

2

2
0.296

AcidAscorbic2e2HAcidorbicDehydroasc - $%% & 0.390

O4HCr3e7HHCrO 2

3

4 %$%% &'&' 1.20

349

350 At mid-level acid concentrations (0.1 M), Np extraction is more comparable between the 

351 various conditions examined.  Under oxidizing conditions, chromate reduction at higher acid 

352 concentrations prevents significant oxidation of Np, but there still appears to be slightly more 

353 Np(VI) than in other 0.1 M HNO3 studies. Hexavalent neptunium would also provide increased 

354 uptake, but, considering the reducing conditions of the system, this is unlikely. Neptunium 

355 uptake for the system lacking chromium is low – indicating that pentavalent neptunium as 

356 predominant.  At the highest acid concentrations studied (1 M), neptunium extraction is nearly 

357 identical for the no chromium and the chromium/ascorbic acid containing systems. For the 

358 chromate containing system, neptunium TOPO-XAD7 uptake comparable to uranium is 

359 observed.  Neptunium in this instance appears predominantly in the hexavalent state.  

360 Considering the variability of redox factors, if acidic recovery of the Hanford tanks were 

361 attempted, further studies would be necessary to evaluate the redox speciation of the relevant 

362 redox active actinides (Np and Pu) to develop effective low-level recovery processes.  If a 

363 secondary cleanup is required of the Hanford sludges (and conditions are not oxidizing), a 
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364 balance between sufficient nitric acid for oxidation of Np while preventing competition between 

365 with nitric acid for the TOPO available in the system would be required.

366

367 Static and Dynamic Capacity Determination

368 Isotherms and breakthrough curves allow determination of resin saturation for batch (static) 

369 and column (dynamic) modes, respectively.  Examining column behavior at heavy metal loading 

370 will show if the column maintains reasonable performance at higher load concentrations.  If 

371 analyte uptake is reaching equilibrium, the resin should behave comparably regardless of the 

372 mode of operation.  Comparable behavior allows validation of the values obtained for analyte 

373 uptake.  A summary of parameters determined for both static and dynamic mode behavior is 

374 shown in Table 1.  Overall, the 38% TOPO-XAD7n resin showed the excellent reproducibility 

375 between static and dynamic modes.

376

377 Static Extraction Capacity Determinations

378 Several assumptions are required for the Langmuir model to be valid: the surface of the 

379 adsorption must be uniform, the adsorbed molecules must not interact, all adsorption must occur 

380 through the same mechanism, and at maximum sorption only a monolayer can be formed.25  

381 Figure 3 shows the Langmuir fit of the saturation isotherm generally describes europium and 

382 uranium uptake and analyte concentrations that provide a saturated resin.  Saturation conditions 

383 were observed for all 58% TOPO-XAD7 resins at 30 mM Eu.  For 24% TOPO-XAD7n resin, the 

384 saturating concentrations for Eu3+ and UO2
2+ were greater than 25 mM of metal.  To ensure 

385 saturation, breakthrough experiments later were performed with at least 30 mM Eu3+ or UO2
2+.  
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386 Saturating stoichiometries (Eu:TOPO) of 1:5 and 1:4 are calculated for the 58% TOPO-XAD7 

387 and 46% TOPO-XAD7n resins, respectively. This indicates a more efficient usage of the n-

388 dodecane wetted material. Typical stoichiometries in solvent extraction systems have noted 1:3 

389 Eu:TOPO extracted species26; however, since the concentration of TOPO on the resin (>1 M) is 

390 an order of magnitude greater than typically used in solvent extraction systems, this excess of 

391 TOPO could lead to a larger number of extractant molecules binding with Eu.  Nitrates can be 

392 bound to a metal ion in a monodentate or bidentate fashion.  Assuming the coordination of three 

393 bidentate nitrate ions, this would produce a coordination number of 10 for the extracted metal 

394 ion.  Coordination numbers of 8-9 are typically observed with lanthanides in a solution matrix.  

395 Crystal structures have shown lanthanides to have coordination numbers as high as 12 in the 

396 solid state.  Since the extraction chromatographic system represents a hybrid between the 

397 solution phase and a crystalline phase, a higher coordination number may not be unreasonable.  

398 The information obtained through initial europium experiments narrowed uranium saturation 

399 investigations to only the 38% TOPO-XAD7n resin.  Stoichiometries for Eu3+ and UO2
2+ in 

400 contact with the 38% TOPO-XAD7n resin were 1:3.5 for Eu:TOPO and 1:1 for UO2:TOPO 

401 complexes, respectively.  The additional dissolution of TOPO appears to have aided in creating 

402 an environment similar to the solvent extraction system.  The 1:1 stoichiometry of the 

403 UO2
2+:TOPO complex was unanticipated.  Typically a 1:2 stoichiometry is observed between 

404 uranium and TOPO in solvent extraction systems.27

405

406 Dynamic Extraction Capacity Determination

407 Figure 4 shows the breakthrough curves obtained for the TOPO-XAD7n resin with Eu3+ and 

408 UO2
2+.  As noted in the previous section, initial europium screening showed analyte uptake 
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409 kinetics of the 24% TOPO-XAD7n where favorable compared to the 36% TOPO-XAD7n.  

410 Uranium uptake was studied exclusively with the 38% TOPO-XAD7n resin.  Given the unique 

411 data obtained regarding Eu:TOPO stoichiometries, the practical dynamic capacity, Q(m), 

412 obtained from the breakthrough curves was particularly useful in validating the saturating values 

413 for Eu3+ for each of the n-dodecane wetted materials examined thus far.  Table 1 notes the 

414 agreement between Q(m) and qmax for the n-dodecane wetted materials.

415

416 Simulated Waste Stream Remediation

417 The simulated waste stream contained 0.1 M HNO3, 0.25 M Al(NO3)3, 1 mM K2CrO4, 30 mM 

418 Eu and U, and tracer Pu and Np.  Oxidizing conditions were highlighted in this experiment to 

419 examine loading effects that could occur if hexavalent, extractable actinide species were present.  

420 The 0.1 % breakthrough observed during the loading step in the single, Pu, Np and U 

421 experiments (not shown) and the lack of breakthrough during the wash step was also observed 

422 with the simulated waste stream.  No evidence of Eu breakthrough during the load step was 

423 observed using either gamma or liquid scintillation spectroscopy.  Europium elution occurred 

424 without any detectable evidence for alpha activity (indicative of actinide recovery) observed 

425 using liquid scintillation detection.  The elution of Eu was quantitative within error.  Removal of 

426 the actinides was comparable to the single element experiments.  The higher actinide loading for 

427 the simulated waste stream increased the column tailing, observed in the semi-log curve (Figure 

428 6); however, recovery was within error still quantitative.  A smaller mesh size resin would most 

429 likely improve the column stripping kinetics and reduce tailing.

430 Although the decontamination of the simulated Al leachate waste stream using extraction 

431 chromatography is comparable to the decontamination obtained in solvent extraction 
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432 investigations, throughput and column blockage can be drawbacks to the implementation of 

433 chromatography on a large scale.  Extractant loss occurs in both liquid-liquid and extraction 

434 chromatographic methods.  If the extractant were covalently bound to a polymer (instead of 

435 merely held in place by solubility preferences), chromatographic separations of nuclear fuel may 

436 become preferential.  Several such resins are currently in development.28,29

437
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