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ABSTRACT: The advent of metamaterials has heralded a period
of unprecedented control of light. The optical responses of
metamaterials are determined by the properties of constituent
nanostructures. The current design philosophy for tailoring
metamaterial functionality is to use geometry to control the
nearfield coupling of the elements of the nanostructures. A
drawback of this geometry-focused strategy is that the functionality
of a metamaterial is predetermined and cannot be manipulated
easily postfabrication. Here we present a new design paradigm for
metamaterials, in which the coupling between chiral elements of a
nanostructure is controlled by the chiral asymmetries of the
nearfield, which can be externally manipulated. We call this mechanism dichroic coupling. This phenomenon is used to control
the electromagnetic induced transparency displayed by a chiral metamaterial by tuning the chirality of the near fields. This “non-
geometric” paradigm for controlling optical properties offers the opportunity to optimally design chiral metamaterials for
applications in the polarization state control and for ultrasensitive analysis of biomaterials and soft matter.
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Light can be manipulated in unique ways with artificially
engineered metamaterials, which are composed of

nanostructures with dimensions comparable to the wavelength
of light. The new phenomena offered by these materials lay the
foundations for disruptive sensing, data storage, and photo-
voltaic technologies.1−3 The optical responses of metamaterials
are defined by the nanostructure properties governed by the
interaction between the individual constituent elements.4 The
accepted paradigm for controlling optical properties is to
manipulate coupling between nanostructure elements through
the use of shape and symmetry. This geometry-driven design
philosophy is inherently limited as optical properties are for the
most part predetermined, with little scope for postfabrication
tuning.
Here we present a new phenomenon by which coupling

between nanostructure elements can be manipulated, and thus,
the optical properties of metamaterials controlled. We show
that in chiral metamaterials, coupling between optically bright
and dark chiral modes can be controlled by manipulating the
chiral asymmetries of the near fields. Thus, by controlling the
chiral asymmetries of the nearfield either by the choice of
incident polarization or the handedness of a surrounding chiral
dielectric, coupling between bright and dark modes and thus
optical properties can be manipulated. Put simply, the chiral
nearfield has an asymmetric interaction with chiral plasmonic
modes, which can be used to control coupling between chiral
states. The concept is analogous to the asymmetry in the

interaction of circularly polarized light (CPL) with chiral
molecular electronic states. This is a new concept for the
metamaterial design toolbox, which we refer to as “dichroic
coupling”, that provides a strategy for the rational design of
functional hybrid molecular-plasmonic chiroptical materials for
application in biosensing and polarization control.
We utilize dichroic coupling to control plasmonic meta-

material transparency. Metamaterials exhibit an analogue of the
quantum interference phenomenon known as electromagnetic
induced transparency (EIT), which is observed in atomic
systems; it is the result of strong near-field coupling between
bright and dark modes.5−7 Controlling the coupling allows
tuning of the optical properties of the coupled system that can
be exploited in practical applications such as modulation of
dispersion and group velocity, creating broadband delay lines,
cryptography, communications, and biosensing.8−10 The
phenomenon we observe has more recently been referred to
as electromagnetic induced reflectance (EIR).11,12 However, in
some of the earlier reported observations of the phenomenon,
it was referred to as EIT.5,13 For consistency, we will refer to
the phenomenon as EIT(EIR). Most importantly, the under-
lying physics of both EIT and EIR in plasmonic systems is
identical. EIT(EIR) has been observed in complex metamate-
rials that consist either of multiple structural elements (e.g.,
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dolmen structures) or a single structure with high levels of
rotational symmetry.5,14−16 Such structures provide bright and
dark modes that can spatially overlap and facilitate coupling. In
previous work, the coupling between bright and dark modes,
and thus the extent of EIT(EIR), was enhanced or reduced
through changing geometry.17−19 It has been reported that the
level of EIT(EIR) in a 3-D chiral metamaterial excited by
circularly polarized light can be manipulated by changing the
degree of symmetry breaking by altering the geometry of the
structure.20 In this study we demonstrate the ability to control
the EIT(EIR) behavior of a chiral plasmonic metamaterial by
manipulating the chiral asymmetries of the near fields.
Fundamental to our dichroic coupling hypothesis is that near

fields can have an intrinsic chiral asymmetry; this has been both
theoretically predicted and experimentally demonstrated.21,22

An optical chirality factor (C; Supporting Information 3.2) is
used to parametrize the chiral asymmetries of near fields. In
certain regions of space, near fields can exhibit C greater than
that of CPL of equivalent frequency and are referred to as being
superchiral. Asymmetry in the excitation of a chiral state by left
handed (LH) and right handed (RH) superchiral fields will be
larger than that for CPL. For the chiral field, which is generated
by the optical excitation of the chiral bright mode, we propose
that its coupling to the chiral dark mode is dependent on the C
of the near field. Specifically, LH (RH) superchiral fields
generated by the optical excitation of a bright mode will interact
more strongly with a LH (RH) dark mode; thus increasing
coupling.

■ RESULTS

In this study we have used chiral plasmonic gold metafilms that
sustain both bright (dipole) and dark (quadrupole) modes.16,23

The metafilms are fabricated by depositing gold on nano-
patterned polycarbonate templates, henceforth referred to as
templated plasmonic substrates (TPS).24 The TPS consist of
“shuriken”-shaped indentations, with 6-fold rotational symme-
try, of either left-handedness (LH) or right-handedness (RH),

arranged in a square lattice (further details in Supporting
Information 1.1).

Effects of Incident Polarization. Figure 1a−c shows the
reflectance spectra collected from LH(RH) substrates meas-
ured by monitoring scattered linearly polarized light and LH
and RH CPL. The reflectance spectra show dependency on
both the handedness of the structure and the helicity of the
light. When the handedness of the structure and helicity of light
match, the reflectance spectra display a region of enhanced
reflectivity characteristic of EIT(EIR). In contrast, when helicity
and structure are mismatched, the region of transparency is
absent. The spectra collected with linear polarized light are
intermediate between the two cases, which is consistent with
the fact that linearly polarized light can be considered a 50:50
combination of LH and RH CPL. Initially the mismatched
spectra appear to have Fano-like profiles. However, although
the Fano function can replicate the bisignate nature of the
reflectivity dips in the mismatched spectra, overall it provides a
poor fit (see Supporting Information 4.2). Thus, we propose
that the observed profiles are governed by coupling, albeit to
varying degrees, between bright and dark modes. However,
resonant scattering from this process undergoes interference
with a scattered background causing a convolution with a Fano
line shape.
To assess the level of coupling between bright and dark

modes for each structure/light polarization combination, we fit
the reflectance profiles using a simple classical model to
describe plasmonic EIT(EIR). To simplify the fitting procedure
and to prevent the possibility of overfitting, we neglect any
Fano character of the reflectance dip profile. The model is
based on two coupled oscillators and replicates reflectance
spectra well, validating the neglect of Fano character. Variations
of this approach have been used in a number of studies.7,25 The
starting point is a model system that is described by a set of two
coupled harmonic oscillators,

ω γω κ̈ + ̇ + ̇ = − ̃− −p t p t p t gf t q t( ) ( ) ( ) ( ) ( )r
2

r r
1

(1)

Figure 1. Reflectivity spectra for RH and LH shuriken nanostructures in water. Experimental data (solid lines) and curves fitted by the plasmonic
EIT(EIR) model (dashed lines) are included for (a) linearly polarized input light, (b) LCP and (c) RCP. Equivalent reflectivity from electromagnetic
simulations are included for (d) linear, (e) LCP, and (f) RCP. Note that the simulation data for linear polarization does show both LH and RH
structures, but they overlap completely.
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The radiative (bright) resonator is described by the
excitation p(t) with a resonance frequency ωr and damping
factor γr. Similarly, the dark mode excitation is described by
q(t) with a resonance frequency ωd and damping factor γd. The
two resonators are coupled via a coupling constant κ. The
bright mode is driven by an external force f(t) and g is a
constant indicating the coupling strength between the oscillator
and the external force. Unlike previous applications of the
coupled oscillator model to plasmonic transparency, we include
terms eiθ and eiϕ, which account for retardation phase shifts, θ
and ϕ, in the bright and dark mode excitations, respectively.
Both resonators are then coupled via a complex coupling
coefficient κ̃ = κe−i(θ−ϕ). The solutions of (1) and (2) take the
form

ω= θ ω− −p t e P e( ) ( )i i t( )
(3)

ω= ϕ ω− −q t e Q e( ) ( )i i t( )
(4)

Assuming an effective medium approximation and using the
above equations, an expression for the reflectivity can be
derived and used for fitting the experimental data. A full
description of the fitting procedure and a complete list of the
parameters required to fit the spectra are given in Supporting
Information 4.1 and 5.1.
The coupling constants (κ) derived from fitting the

experimental reflectance profiles, Figure 1a−c, are given in
Table 1. The coupling constants for the matched combinations

are approximately a factor of 2 larger than those of the
mismatched. While, as would be expected, the values obtained
for linear polarization are approximately half way in between
those of the matched and mismatched.
Simulating the Effects of Polarization. To both validate

our experimental measurements and to test the central
hypothesis of our work, coupling between chiral bright and
dark modes is governed by the chirality of the near fields, EM
simulations have been performed. We obtain the reflectance
spectra for the structure-polarization combinations measured,
Figure 1d−f. There is very good agreement between the
simulated and the experimental reflectance spectra for linear
polarized light. For CPL there is qualitative agreement between
experiment and simulated spectra. The presence (absence) of
the transparency dip in the matched (mismatched) structure−
polarization combinations are reproduced. However, the
simulations underestimate the size of the transparency dip in
the matched combinations, which implies an underestimate of
the level of coupling between bright and dark modes owing to
our interpretation of the experimental results. We speculate that
geometrical differences between the fabricated and simulated
structures, such as sloping of the edges or the arm curvature
that introduce additional symmetry breaking to the structure, as
previously demonstrated, may be the reason for this.26 Thus, it
may be the case that such geometric properties change the
extent of the EIT(EIR) effect.

The optical chirality parameter C has been used to
parametrize the level of chiral asymmetry of the near fields
and is normalized to the value of that of CPL.21,27 The
simulated spatial distribution of the C of the near fields for
structure−polarization combinations are shown in Figure 2 (a−

f top surface, g−l bottom surface). The C of the nearfield is
dependent on both the incident light polarization and the
handedness of the structure. It is clear that regions of the near
fields exhibit magnitudes of C greater than that of CPL (>1, i.e.,
are superchiral), with magnitudes of around 10 at the bottom
surface of the structure and up to 100 at the top surface. The
scale bars shown in Figure 2 are ranged manually to aid
comparison of the top and bottom surfaces. In order to visually
see the regions of minimum optical chirality, the scale bar
values are reduced, hence, the regions showing large chirality
values show saturation. See Supporting Information 8.3 for
maximum scales. The structures also generate nearfields of both
handedness (positive for LH and negative for RH), albeit one
in excess. It should be noted that the C distributions for
circularly polarized light (i.e., Figure 2b,c,e,f and h,i,k,l) exhibit
2-fold rotational symmetry rather than the 6-fold rotational
symmetry that might have been expected. The explanation for
this is the symmetry reduction caused by the shurikens being
arranged in a periodic square lattice, as the unit cell of this
structure has only 2-fold rotational symmetry. Simulations for
an isolated shuriken structure display the expected 6-fold
rotational symmetry (see Supporting Information 8.1).
The C value can vary depending on the wavelength position

examined, in particular when calculated at the left peak, central
dip or right peak of the EIT(EIR) response (Supporting
Information 8.2). From the maps it is clear that the sign of the
net optical chirality does not change in the region spanning the
left peak, central dip and right peak. In contrast, for the

Table 1. Coupling Constants from Plasmonic EIT Modela

coupling (κ) × 10−2 LCP linear RCP

LH 4.8 ± 0.1 3.6 ± 0.1 2.6 ± 0.1
RH 2.8 ± 0.1 3.9 ± 0.1 5.1 ± 0.1

aThis data is extracted by fitting the experimental data in Figure 1.

Figure 2. Data obtained from simulations of hybrid shuriken structures
in water. The spatial distribution of chirality factor C for each
combination in Figure 1 is shown for (a)−(f) the hybrid structure top
surface and (g)−(l) the hybrid structure bottom surface.
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matched and linear cases, the spatial distribution of optical
chirality shows a dramatic change around the EIT(EIR)
window, indicative of strong coupling to the dark mode for
these combinations.
Based on the dichroic coupling hypothesis it can be assumed

that for LH (RH) structures the level of coupling is governed
by the magnitude of the C values for LH (RH) chiral near
fields. Hence, the highest level of coupling for LH (RH) would
occur for nearfields which have the highest level of LH(RH)
chiral asymmetry, that is, they have the most positive (negative)
value of optical chirality. Consequently, we define a parameter
Cmax that is the maximum positive (negative) value for the
nearfield for LH (RH) structures.
In Figure 3, the coupling constants derived from fitting the

experimental data with the classical coupled oscillator model

are plotted against Cmax. Consistent with our hypothesis
coupling scales with optical chirality; with matched and
mismatched combinations generating nearfields with the
highest and lowest levels of Cmax, respectively.
The data presented provides prima facie evidence of the

validity of our dichroic coupling hypothesis through presenting
a correlation between coupling and the optical chirality of the
near fields. For an unambiguous validation, we provide further
evidence that the plasmonic transparency, and hence bright-
dark mode coupling, is correlated to the chiral asymmetry of
the near field. Specifically, we will show that optical chirality of
the nearfields can be manipulated (i.e., increase or decrease
systematically) by the introduction, around the nanostructure,
of a (isotropic) chiral dielectric.
Simulating the Effects of Isotropic Chiral Dielectrics.

We first present EM simulations which demonstrate that
introducing an isotropic chiral dielectric both increases the Cmax
and also increases the coupling, between bright and dark
modes, changing the plasmonic transparency behavior of the
substrate. Simulations are focused on linearly polarized light.
The isotropic chiral dielectric is modeled using the constitutive
equations for a chiral medium:

ε ε ξ= +D E i B0 r (5)

μ ξ= +H B i E/ (6)

Here, ε0 is the permittivity of free space, εr is the relative
permittivity, μ is the permeability, E is the complex electric
field, B is the complex magnetic flux density, H is the magnetic
field, D is the electric displacement field, and ξ is a local
parameter describing the chiral property of a molecular layer. ξ
is only nonzero for a chiral dielectric. The sign of ξ is defined
by the handedness of the chiral dielectric and its value can be
estimated using the general form given by28

ξ β
ω ω ω ω

=
ℏ + ℏ + Γ

+
ℏ − ℏ + Γ

⎛
⎝⎜

⎞
⎠⎟i i

1 1
c

0 12 0 12 (7)

The parameters in eq 7 can be estimated from the quantum
equation of motion of density matrix assuming a low density of
molecules as described by Govorov et al.28 Here βc is an
intrinsic coefficient that determines the magnitude of chiral
properties and we use βc = 4.1 × 10−4. Here ℏω0 (where ℏ is
the reduced Planck’s constant h/2π and ω0 is the absorption
frequency) and Γ are the energy and intrinsic width of the
resonant chiral excitation of the dielectric. Consequently, the
value of ξ at a particular wavelength is dependent on the
chiroptical properties of the chiral dielectric. Chiral organic
molecules tend to have absorption near the far UV region and
corresponding ξ values (at ∼700 nm) lie at around 4 × 10−5,
see Supporting Information 6.1. In order to observe the effects
of ξ on the plasmonic response of the chiral nanostructure,
simulations are performed for 0 < ξ < 1.5 × 10−4.
We wish to compare the level of coupling predicted by

modeling with that observed experimentally. In this case, we
have chosen not to compare κ values, as we did for the effects
of CPL, but have instead used a simpler parameter, separation
(S) of the two minima either side of the reflectivity dip. From
the coupled oscillator model it is apparent that S is dependent
on the coupling constant κ (see Supporting Information 4.1).
In contrast to CPL data, and the mismatched combination in
particular, all linearly polarized data show reflectance dips;
therefore, S values can be obtained for all data sets. The S value
can also be measured more accurately from both experiment
and simulation, than the κ value derived from fitting both sets
of data, which is the principle motivation for its choice. To
parametrize the asymmetry of the effects of chiral dielectrics on
the reflectance spectra, hence, asymmetry in κ, we derive a
parameter from S:

ΔΔ = − − −S S S S S( ) ( )chiral
RH

water
RH

chiral
LH

water
LH

where chiral/waterSLH/RH is the separation of the reflectance dips
for LH(RH) structures in the presence of water (chiral
dielectric). Thus, ΔΔS parametrizes the asymmetry in κ
induced by the presence of a chiral dielectric.
In Figure 4a,b are the results for simulations with linearly

polarized light for varying magnitudes of positive ξ. Two
significant conclusions can be drawn from the simulated
spectra. First, for the RH structure, the presence of a chiral
dielectric enhances the coupling between bright and dark
modes, leading to an increase in the wavelength range over
which the transparency window occurs; and this effect increases
with ξ. Second, the effect of the chiral dielectric is asymmetric,
with a reduction in the coupling for the LH structure, hence,
showing a differential change in the separation/coupling; the
size of the asymmetry increases with increasing ξ, Figure 4c.

Figure 3. Effect of chirality on near-field coupling in the
nanostructures. The coupling constants for each structure−polar-
ization combination are taken from Table 1, and the Cmax values were
calculated from simulation data for the observed points of highest
chirality.
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As expected the level of coupling is correlated to the Cmax of
the nearfield; a plot of S versus Cmax is shown in Figure 4d.
Introducing a positive ξ chiral dielectric causes an increase in
Cmax for the RH, but reduces it for LH structures. Thus,
coupling in the RH (LH) case becomes enhanced (reduced)
because the chiral asymmetry of the nearfield increases
(decreases).
It is important to note that both EM simulations and

experimental measurements demonstrate that both the level of
coupling and optical chirality are not affected by small changes
in properties of an achiral dielectric (altering the refractive
index from 1.33 to 1.344 see Supporting Information 5.2).
However, the level of coupling for higher refractive index
(≥1.4) dielectrics is higher than that of water owing to the fact
that the quadrupole mode has a slightly larger refractive index
sensitivity than the dipole mode. Consequently, the change in
the relative position of the two modes becomes significant at
higher refractive index causing an increase in coupling. This
effect is independent of chirality and is replicated in
simulations.
Experimental Verification. To confirm the prediction of

the EM simulations we have performed experiments using
chiral dielectrics that display a range of ξ values. Three isotropic
chiral liquids have been studied, namely (+)- and (−)-α-pinene
as well as a racemic mixture of the two. We have also deposited
a 20 nm thick polycrystalline film of chlorophyll a (circular
dichroism spectrum shown in Supporting Information 7.1)
onto the substrates. The motivation for the choice of these

materials is that the pinenes allow both enantiomers and a
racemic mixture to be studied, while chlorophyll would be
expected to have a ξ value significantly larger in magnitude than
those of the pinene enantiomers. This is because pinenes
display CD in the UV, whereas chlorophyll a displays CD in the
VIS spectrum.29,30 Thus, based on eq 7, chlorophyll a would be
expected to have a larger ξ value.
Figure 5 shows the reflectance spectra collected from LH and

RH structures in the presence of the chiral dielectric media.
The experimentally derived ΔΔS values for the pinenes and
chlorophyll a can be replicated with simulations, Figure 6,
assuming a refractive index of 1.4 for pinene and 1.34 for
chlorophyll, as well as ξ values of 2.6 × 10−5 and 3 × 10−4 that
are close to those expected using eq 7, ∼4 × 10−5 and ∼3 ×
10−4, respectively. Although chlorophyll a and pinenes induce
similar levels of asymmetries, for the former case, this is
achieved using a 20 nm film rather than a complete chiral
environment. This is consistent with the larger ξ value of
chlorophyll a.
The asymmetries in separation values (ΔΔS) for exper-

imental and simulated results, as well as the matching ξ values
are listed in Table 2.

■ DISCUSSION

The essence of the dichroic coupling hypothesis is that chiral
nearfields interact asymmetrically with plasmonic resonances;
in an analogous manner to the asymmetric interaction of CPL
with chiral electronic molecular states. In the current study,

Figure 4. Effects of ξ value on S and relation to chirality. Simulated spectra of isotropic chiral liquid layers on shurikens are given for (a) LH
structures and (b) RH structures over a range of positive ξ values. The ΔΔS values for these spectra are then plotted against ξ in (c). The S values
are also extracted from the simulated spectra and plotted against Cmax at the bottom surface in (d).
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chiral near fields generated by the excitation of a chiral (bright)
dipole mode, display asymmetric interaction, (i.e., dependent
on the handedness of the near field) with a chiral (dark)
quadrupole mode. The asymmetry of the interaction of the
chiral nearfield controls the coupling between the dark and
bright modes, and hence plasmonic transparency. Thus,
coupling in such resonator systems can be controlled by
manipulating the chirality of the near fields. This was achieved
by using both the polarization of the incident light and by the
introduction of chiral dielectrics. The level to which a chiral

dielectric can change the optical chirality of the near field is
determined by its chiroptical properties.
An important observation of this study is the large magnitude

of the dichroic coupling, changes of ∼50% are observed in κ
when the handedness of the nearfields are switched by using
CPL. Since κ is determined by the excitation of the chiral
(dark) quadrupole mode by the chiral nearfield, this implies an
asymmetry factor of 50%. This level of asymmetry in the
interaction of chiral near fields with a chiral quadrupole mode is
greater by 3 orders of magnitude than that displayed in the
excitation of chiral molecular resonances by CPL. This

Figure 5. Experimental reflectivity in water (black) and chiral material is shown for (a, b) (−)-α-pinene, (c, d) (+)-α-pinene, (e, f) racemic α-pinene,
and (g, h) chlorophyll a. Red lines are used for the LH structures and blue for the RH. The chiral spectra have been horizontally shifted to overlap
with water to aid comparison.
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difference in magnitude of the asymmetry factor can only
partially be attributed to the superchirality of the near field (1−
2 orders of magnitude). This implies an inherently higher level
of asymmetry in the interaction of chiral near fields with chiral
plasmonic (quadrupole) modes. Such a conclusion is supported
by work by Jain et al. which shows that nondipole transitions

which are forbidden in the farfield are allowed with nearfields.31

We suggest that this concept can be extended to the enhanced
asymmetry in excitations of chiral dark modes by chiral
nearfields.
Our proposal of a dichroic coupling model provides a

foundation for understanding how chiral dielectric materials can

Figure 6. Simulation data using a refractive index of 1.4 for pinenes and 1.34 for chlorophyll. Reflectivity in water (black lines) and chiral medium is
shown for (a, b) (−)-α-pinene, (c, d) (+)-α-pinene, (e, f) racemic α-pinene, and (g, h) chlorophyll a. Red lines are used for the LH structures and
blue for the RH. As in Figure 5, the plots for chiral media have been horizontally shifted to overlap with water to aid comparison.
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influence the optical properties of chiral plasmonic metamate-
rials. In previous studies, superchiral fields have been shown to
be sensitive to chiral structure of (bio)materials over a range of
length scales. A “polarimetry” model was used to rationalize the
results of these studies, in which the ability of a chiral molecule
to induce asymmetric behavior in optical properties of LH and
RH chiral plasmonic metamaterials was assigned to a large
asymmetry in the effective refractive index of a chiral layer in
chiral near field.32 However, theoretical work could not
replicate the magnitude of the effects observed.33 Our work
shows that the ability of chiral media to induce asymmetric
behavior is more complex than the “polarimetry” model and
that it is the ability of chiral dielectrics to alter plasmonic
coupling that is the origin of the observed effects.
In summary, we demonstrate an intuitive dichroic coupling

model, based on large dissymmetry in the interactions of chiral
nearfields with chiral multipole modes. By tuning the optical
chirality of the nearfields, coupling between chiral dipole and
multipole modes can be controlled, and thus plasmonic
transparency manipulated. In this study CPL and isotropic
chiral dielectrics have been used to control the optical chirality
of the nearfield. However, using incident optical beam with
exotic polarization states to achieve enhanced optical chirality
in the near field,34 or anisotropic chiral liquid crystal phases
(which have largest effective ξ values available for molecular
materials),35 would provide even greater changes on nearfield
optical chirality and hence metamaterial transparency. Thus,
our work provides a valuable new concept for the metamaterial
toolbox that both enables design optimization and a rational
basis for analytical applications in biomaterials/soft matter.
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