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ABSTRACT: The C-19 quassinoid eurycomalactone (1) has
recently been shown to be a potent (ICg, = 0.5 uM) NF-xB
inhibitor in a luciferase reporter model. In this study, we show
that 1 with similar potency inhibited the expression of the NF-
kB-dependent target genes ICAM-1, VCAM-1, and E-selectin
in TNFa-activated human endothelial cells (HUVECtert) by
flow cytometry experiments. Surprisingly, 1 (2 uM) did not
inhibit TNFa-induced IKKa/f or IkBa phosphorylation
significantly. Also, the TNFa-induced degradation of IkBa
remained unchanged in response to 1 (2 yM). In addition,
pretreatment of HUVECtert with 1 (2 uM) had no statistically
significant effect on TNFa-mediated nuclear translocation of
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the NF-xB subunit p6S (RelA). Quantitative RT-PCR revealed that 1 (0.5—S5 uM) exhibited diverse effects on the TNFa-
induced transcription of ICAM-1, VCAM-1, and SELE genes since the mRNA level either remained unchanged (ICAM-1, E-
selectin, and VCAM-1 at 0.5 uM 1), was reduced (VCAM-1 at 5 uM 1), or even increased (E-selectin at S M 1). Finally, the
time-dependent depletion of a short-lived protein (cyclin D1) as well as the measurement of de novo protein synthesis in the
presence of 1 (2—S M) suggested that 1 might act as a protein synthesis inhibitor rather than an inhibitor of early NF-xB

signaling.

Eurycoma longifolia Jack. (Simaroubaceae) is a popular
medicinal plant of Southeast Asia mainly known as Tonkat
Ali. In particular root extracts are used to treat various
conditions including sexual dysfunction, loss of libido, aging,
stress, fatigue, impaired exercise recovery, malaria, dysentery,
diarrhea, cancer, leukemia, diabetes, anxiety, high blood
pressure, syphilis, or glandular swelling. Its use as an
aphrodisiac and tonic for sportsmen made it also quite popular
in the West."” Many bioactive compounds have been isolated
from E. longifolia, such as quassinoids, canthine-6-one alkaloids,
P-carboline alkaloids, squalene derivatives, tirucallane-type
triterpenes, biphenylneolignans, phenolic compounds, and
bioactive steroids.'

Via a bioguided isolation approach we recently identified
several inhibitors of the transcription factor NF-«B (nuclear
factor kappa-light-chain-enhancer of activated B cells) in the
roots of E. longifolia.” One of the most interesting compounds
appeared to be the C-19 quassinoid eurycomalactone (1; see
Figure 1), which showed an ICg, value of 0.5 yM in tumor
necrosis factor (TNF)a-activated HEK-293/NF-kB-luc cells, a
stable cell line containing an NF-kB-driven luciferase reporter
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Figure 1. Chemical structure of eurycomalactone (1).

gene. The transcription factor NF-«B is a central player in the
inflammatory response regulating, for example, the expression
of endothelial adhesion molecules, such as VCAM-1, ICAM-1,
or E-selectin, which is pivotal in the initiation of inflammation
since adhesion molecules promote extravasation of leucocytes
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to the site of injury.”” The NF-kB signaling pathway is activated
in response to pro-inflammatory cytokines such as TNFa or
other g)ro-inﬂammatory stimuli, such as lipopolysaccharide
(LPS).® The NF-kB transcription factor family comprises five
transcription factor proteins (p6S (RelA), c-Rel, RelB, p50, and
pS2) that are usually found as homo- or heterodimers. In most
cell types a p65/pS0 heterodimer is prevalent that is held
inactive in the cytoplasm by masking its nuclear localization
sequence by one of several inhibitors of kB (IkB) proteins, of
which IkBa is the prototypical member.”” Pro-inflammatory
stimuli induce a complex signaling cascade that leads to
phosphorylation of the IkB kinase (IKK) at its activation loop
(Ser177 and Ser181). The phosphorylated IKK complex in turn
phosphorylates IkB to tag it for degradation via the 26S
proteasome. The thereby unmasked NF-xB dimer subsequently
translocates to the nucleus and binds to NF-kB response
elements to initiate target gene expression.s’7

The aims of the present study were (i) to verify that 1 indeed
inhibits NF-xB target genes in a physiologically relevant model,
i.e., human endothelial cells, and (ii) to determine the level of
interference of 1 in the canonical NF-kB signaling cascade. A C-
20 quassinoid, eurycomanone, and a methanolic extract of E.
longifolia roots were recently reported to inhibit NF-xB by
inhibiting the translocation of p65 to the nucleus.””

B RESULTS AND DISCUSSION

Eurycomalactone Inhibits the Expression of TNFa-
Induced Endothelial Adhesion Molecules. Endothelial
adhesion molecules, VCAM-1, ICAM-1, and E-selectin, are
target gene products of NF-xB.” We therefore examined the
effect of 1 (0.5—10 uM) in HUVECtert on the TNFa (10 ng/
mL)-induced expression of VCAM-1, ICAM-1, and E-selectin.
Pretreatment with 1 (30 min) concentration-dependently
inhibited the expression of all three adhesion molecules with
ICs, values of around 0.5 uM (ICy, for VCAM-1 = 0.54 uM;
ICy, for ICAM-1 = 0.58 uM; ICq, for E-selectin = 0.56 uM)
(Figure 2A—C). These IC, values correspond well to the ICq,
value obtained in the luciferase reporter gene model that
identified 1 as an NF-kB inhibitor (ICs, = 0.5 u#M).” In the
absence of TNFa, 1 (0.5—10 uM) had no effect on basal
expression levels of VCAM-1, ICAM-1, and E-selectin (Figure
S1, A—C, Supporting Information).

None of the tested concentrations of 1 showed a significant
impairment of cell viability compared to solvent vehicle either
in the absence or presence of TNFa, although there was a
tendency toward impaired viability visible at 10 uM (Figure S2,
Supporting Information). We therefore did not use concen-
trations higher than 5 yM for subsequent experiments.

Eurycomalactone Does Not Interfere with the Canon-
ical Upstream Signaling Pathway of NF-xB. To determine
the level of interference within the NF-«B signaling cascade, we
first examined the influence of 1 (2 yM) on TNFa (10 ng/
mL)-mediated IKKa/f and IxBa phosphorylation as well as on
the degradation of IxBa. In HUVECtert IKKa/f and IxBa
became phosphorylated, and thus IxBar degraded after S min in
response to TNFa stimulation (Figure 3A—C). HUVECtert
pretreated with 2 yuM 1 and stimulated with TNFa showed no
statistically significant difference compared to untreated control
cells in terms of IKKa/f and IkBa phosphorylation as well as
IkBa degradation (Figure 3A—C). This suggested that 1
interferes with the NF-kB signaling cascade downstream of IxB
degradation.

3187

>

VCAM-1 expression
(Relative units)

SV PA

ICAM-1 expression
(Relative units)

SV PA

E-selectin expression
(Relative units)

Eury (uM)

Figure 2. Eurycomalactone (1) inhibits TNF-a-induced cell surface
expression of the endothelial adhesion molecules VCAM-1 (A),
ICAM-1 (B), and E-selectin (C) in HUVECtert endothelial cells.
HUVECtert were pretreated with the indicated concentrations of 1 or
solvent vehicle (SV) as control for 30 min prior to stimulation with
TNFa (10 ng/mL) for 18 h (VCAM-1, ICAM-1) or S h (E-selectin).
Parthenolide at 10 uM (PA) was used as positive control. Protein
expression levels were analyzed by flow cytometry. Data shown are
means + SD (n = 3; *P < 0.0S, one-way ANOVA/Dunnet’s versus
solvent vehicle control).

Next, we tested whether 1 interferes with the translocation of
NF-kB to the nucleus. To this end, we prepared nuclear protein
extracts of cells that had been pretreated with 1 (2 M, 30 min)
or solvent vehicle and were then stimulated with TNFa for 1 h.
Figure 4 shows that nuclear p65 protein level increases in
response to TNFa. Interestingly, 1 (2 4M) was not able to
inhibit this translocation. Also, the binding of p65 to an NF-xB
DNA consensus sequence was not blocked by 1 (data not
shown). This suggests that 1 acts further downstream possibly
by inhibiting transcription or translation of the NF-kB target
gene products VCAM-1, ICAM-1, and E-selectin. These
findings appear to be in contrast to a recent report that stated
that a methanolic extract of E. longifolia roots inhibits
translocation of p6S to the nucleus in LPS-activated
RAW?264.7 macrophages. However, other compounds besides
1 might be responsible for this effect.” That study shows also
that the overall p65 protein level in RAW264.7 cells strongly
declines in the presence of the E. longifolia extract compared to
LPS control. Thus, reduced p6S level in the nucleus could be
also explained by a reduced expression of p6S in response to E.
longifolia extract or simply due to cytotoxicity since the authors
do not provide viability data of their cells. Another report
shows that the C-20 quassinoid eurycomanone (45 uM)
inhibits the NF-xB signaling pathway by inhibiting the
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Figure 3. Eurycomalactone (1) does not impair phosphorylation of
IKK or IxB as well as IkB degradation in TNFa-stimulated
HUVECtert endothelial cells. HUVECtert were pretreated with 2
UM 1 or solvent vehicle as control prior to stimulation with TNFa (10
ng/mL) for 30 min. p-IKK (A), p-IxB (B), and IkB (C) levels were
detected by Western blot analyses 5 or 15 min after TNFa stimulation
as indicated. Actin was used as loading control. Data shown are means
+ SD (n = 3; n.s. = not significant, one-way ANOVA/Dunnet’s).

phosphorylation of IkBa and subsequent translocation of p65
to the nucleus in TNFa-activated Jurkat T cells.® The authors
argue that the presence of a lactone function and the a,f-
unsaturated ketone group in eurycomanone might account for
the NF-«xB inhibitory effects as shown for other NF-xB
inhibitors.” Although both functions are present in 1, no
inhibition of NF-kB nuclear translocation and DNA binding
was observed.

Eurycomalactone Does Not Inhibit mRNA Expression
of Endothelial Cell Adhesion Molecules. To test whether 1
interferes with the transcription of endothelial adhesion
molecules, we determined the mRNA level of VCAM-I,
ICAM-1, and E-selectin in HUVECtert pretreated with 0.5 and
S uM 1 and stimulated with TNFa (10 ng/mL) for 4 h
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Figure 4. Eurycomalactone (1) does not impair nuclear translocation
of p6S in TNFa-stimulated HUVECtert endothelial cells. HUVECtert
were pretreated with 2 uM 1 or solvent vehicle as control for 30 min
prior to stimulation with TNFa (10 ng/mL). After 1 h of stimulation
nuclear protein extracts were prepared and p65 levels detected by
Western blot analyses. Lamin was used as loading control. Data shown
are means + SD (n = 3, n.s. = not significant, one-way ANOVA/
Dunnet’s).

(VCAM-1, ICAM-1) and 2 h (E-selectin), respectively. As a
positive control we used the NF-xB inhibitor parthenolide (10
uM) and on the other side the protein synthesis inhibitor
cycloheximide (at the standard concentration of 10 ug/mL
corresponding to 35 M) since quassinoids are reported to act
as protein synthesis inhibitors in eukaryotic cells by targeting
ribosomal peptidyl transferase.'” Whereas parthenolide com-
pletely inhibited TNFa-induced mRNA expression of VCAM-
1, ICAM-1, and E-selectin, the effect in the presence of 1
appeared more complex (Figure 5): 1 had no effect on TNFa-
induced ICAM-1 mRNA level. TNFa-induced VCAM-1
mRNA expression was inhibited in the presence of 5 yuM 1
but not affected by 0.5 uM 1. TNFa-induced E-selectin
expression even increased in the presence of 5 yuM 1 but was
not affected by 0.5 uM of 1. Thus, overall 0.5 uM 1 did not
influence endothelial adhesion molecule mRNA expression,
whereas a higher concentration (5 yM) reduced TNFa-
induced VCAM-1, increased E-selectin, and did not change
ICAM-1 mRNA level. Comparison with the protein synthesis
inhibitor cycloheximide shows a similar but not identical
pattern: 35 uM cycloheximide inhibits TNFa-induced VCAM-
1, but increases ICAM-1 and E-selectin mRNA expression,
which is in agreement with previously published data.''™"
The observation that mRNA levels of the adhesion molecules
ICAM-1 and E-selectin (ELAM-1) increase in response to
protein synthesis inhibition was observed earlier and explained
by labile proteins that regulate (in this case decrease) mRNA
stability.''* Protein synthesis inhibition thus will lead to
increased mRNA level."” These data suggest that 1 might act at
a post-transcriptional level as reported earlier for quassi-
noids.''¢

As a next step, we tested whether cycloheximide is able to
inhibit VCAM-1 protein expression in our hands and to
determine the concentration that appears equally effective to 1
in order to allow comparison of both compounds in subsequent
experiments. Concentration—response experiments (Figure 6)
revealed that cycloheximide effectively inhibits VCAM-1
expression at 0.035—3.5 uM (ICyy = 0.3 uM).

Eurycomalactone Acts as Protein Synthesis Inhibitor.
We therefore compared 1 (2 uM, ~4X ICy;) and the protein
synthesis inhibitor cycloheximide (1 uM) regarding their
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Figure S. Eurycomalactone (1) decreases mRNA level of VCAM-1 at
S uM (A) but does not inhibit mRNA expression of endothelial
adhesion molecules VCAM-1 at 0.5 uM (A) or ICAM-1 (B) and E-
selectin (C) at 0.5 and S uM in HUVECtert endothelial cells.
HUVECtert were pretreated with the indicated concentrations of 1 or
solvent vehicle (SV) as control for 30 min prior to stimulation with
TNFa (10 ng/mL) for 4 h (VCAM-1, ICAM-1) or 2 h (E-selectin).
Parthenolide (PA, 10 M) was used as positive control for NF-xB
inhibition and cycloheximide (CHX, 35 uM) as positive control for
protein synthesis inhibition. mRNA expression levels were analyzed by
gRT-PCR. Data shown are means + SD (1 = 3; n.s. = not significant;
*P < 0.0S, paired f test, two-tailed).

influence on protein levels of short-lived proteins in time-
course experiments by Western blot analysis. Figure 7A/B show
that the level of cyclin D1, which has a half-life of about 24
min,"” is significantly reduced after 30 min of incubation with
cycloheximide or 1, although cycloheximide compared to 1
elicited an apparently more pronounced decay. Interestingly,
survivin, with a similar half-life (~30 min)'® to cyclin D1, was
less responsive to cycloheximide (significant inhibition after
240 min), and 1 did not show an effect at all on survivin levels
(Figure 7C/D). Additional proteins we have examined are pS3
and cyclin A, with reported half-lives of ~5—20 min'® and >12
h,*" respectively. Neither cycloheximide nor 1 affected their
protein level in HUVECtert within the chosen time frame (8 h)
(data not shown). Reasons for this are most likely the half-life
of cyclin A, which exceeds 8 h, and the cell type we used."
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Figure 6. Cycloheximide inhibits TNF-a-induced VCAM-1 expression
in HUVECtert endothelial cells. HUVECtert were pretreated with the
indicated concentrations of cycloheximide (CHX) or solvent vehicle
(SV) as control for 30 min prior to stimulation with TNFa (10 ng/
mL) for 18 h (VCAM-1). Protein expression levels were analyzed by
flow cytometry. Data shown are means + SD (n = 3; *P < 0.0, one-
way ANOVA/Dunnet’s versus solvent vehicle control).

mRNA levels of cyclin D1 were not affected in response to
cycloheximide (1 yM) or 1 (2 uM) (Figure S3, Supporting
Information), corroborating inhibition of a post-transcriptional
step as a reason for the reduced cyclin D levels. To get a clearer
picture, we employed a Click-iT protein synthesis assay. This
assay uses O-propargyl-puromycin (OPP), which is efficiently
incorporated into newly synthesized proteins. After incorpo-
ration, fluorescent Alexa Fluor 488 picolyl azide is added and
ligated to the OPP alkyne, allowing the modified proteins to be
detected by image-based analysis. Since the incubation time for
this assay is rather short (30 min), we applied higher
concentrations of both compounds: 1-35 uM cycloheximide
and 2—5 yM 1. To allow quantification, next to fluorescence
detection by confocal microscopy we quantified Alexa Fluor
488 fluorescence also by flow cytometric analysis (Figure 8A/
B). Both compounds inhibited de novo protein synthesis
significantly, although 1 appeared to be slightly less effective
than cycloheximide. Altogether, the presented data suggest that
1 acts as a protein synthesis inhibitor. This mechanism may at
least contribute to the inhibition of luciferase gene expression
as observed in our previous publication’ and reduced
endothelial adhesion molecules as shown in Figure 2.
Quassinoids were reported in the 1970s and early 1980s to
bind to the peptidyl transferase center of ribosomes inhibiting
peptide bond formation in eukaryotes, thus acting as elongation
inhibitors.””** Actively synthesizing ribosomes will continue
protein szrnthesis and need to terminate before quassinoids
bind.”*~** Silva et al. quite recently reported that the quassinoid
isobrucein B isolated from the Amazonian medicinal plant
Picrolemma sprucei exerted in vivo and in vitro anti-inflammatory
activity.”® They showed that isobrucein B inhibits the release of
pro-inflammatory cytokines in LPS-activated primary murine
peritoneal macrophages in a concentration-dependent manner
within a similar concentration range to that used in our study
(0.1-10 pM). Interestingly, isobrucein B was unable to
interfere with the NF-xB signaling pathway in LPS-activated
RAW264.7 macrophages; the mRNA levels of the NF-xB target
gene TNF also remained unaffected. Since isobrucein B
inhibited luciferase activity also in RAW264.7 macrophages
transfected with a luciferase reporter gene that was under the
control of a constitutively acting promotor, the authors
concluded that isobrucein B might be acting nonspecifically
through modulation of a post-transcriptional mechanism,
probably inhibition of protein synthesis.”® The number of
publications addressing quassinoids as potential NF-xB
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Figure 7. Time-dependent effect of eurycomalactone (1) or cycloheximide on the protein levels of cyclin D1 and survivin. Cells were left untreated
or incubated with cycloheximide (1 uM, CHX), 1 (2 uM, Eury), or solvent vehicle (SV) for the indicated time. Then cells were harvested, and
Western blot analysis was performed using antibodies against cyclin D1 (A, B) or survivin (C, D). Actin was used as loading control. A representative
Western blot out of three is shown. Bar graphs show means + SD (n = 3; *P < 0.0S, one-way ANOVA/Dunnet’s versus untreated control).

inhibitors is currently quite limited.”**°">° The available data
indicate that isobrucein B (10 uM, LPS-activated murine
macrophages), eurycomalactone (2 pM, TNFa-activated
HUVECtert), eurycomanol (100 yM, TNFa-activated Jurkat
T cells), and brusatol (50 nM, IL-1§ activated murine
insulinoma-derived STC6 cells) do not interfere with NF-xB
p6S translocation to the nucleus, whereas eurycomanone (45
UM, TNFa-activated Jurkat T cells) and brucein D (3—30 uM,
PANC-1 pancreatic cancer cells) do.*”****’ Thus, eurycoma-
none is the only quassinoid shown to inhibit the NF-xB
signaling cascade in a cytokine-activated cellular model.
Quassinoids have also been reported to inhibit the transcription
factors Nrf2 and AP-1.°°7* Ren et al. reported that brusatol
(but not brucein C) inhibits Nrf2 at nanomolar concentrations
in various cancer cell lines by reducing its protein level through
enhanced ubiquitination and degradation of Nrf2.”" Nrf2
depletion in response to brusatol was verified by Olayanju et
al.’' They highlighted the specificity of brusatol (300 nM) for
Ni1f2 and postulated a post-transcriptional mechanism that does
not involve enhanced proteasomal or autophagic degradation of
Nrf2." A recent proteome analysis in the non-small-cell lung
cancer cell line AS49 identified brusatol (500 nM) as a global
protein synthesis inhibitor.”> Beutler et al. addressed the
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potential of quassinoids to inhibit the transcription factor AP-
1. They identified ailanthinone, glaucarubinone, and 6a-
senecionylchaparrin as potent AP-1 inhibitors in a luciferase
reporter model. The activity, however, appeared not to be
specific since NF-xB and serum response element (SRE)-driven
gene transactivation was also inhibited. Measurement of de novo
protein synthesis showed no clear correlation between AP-1
inhibition and protein synthesis inhibition.”* Also in the present
study, the concentrations sufficient to inhibit an NF-kxB-driven
target gene (ICgy = 0.5 uM) was lower than that leading to
significant protein synthesis inhibition (2 gM). Thus, it cannot
be excluded that next to protein synthesis inhibition additional
mechanisms may contribute to the in vitro anti-inflammatory
effect of 1.

The differences in the described effects of some investigated
quassinoids might also be a result of the structural
heterogeneity within this compound class, which is currently
subdivided into C-18, C-19, C-20, C-22, and C-25 types."’
Unfortunately larger SAR studies were only carried out using
C-20-type quassinoids”>**** and are missing to our knowledge
for the other subtypes. Therefore, the impact of changes in the
total number of carbons and shape of the basic skeletons
remains rather unclear and seems to be even more complex
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Figure 8. Eurycomalactone (1) inhibits de novo protein synthesis. Cells
were incubated with cycloheximide (1—35 M, CHX), 1 (2 or S uM,
Eury), or solvent vehicle (SV) for 30 min, and then Click-iT OPP
reagent was added for 30 min. Further staining was performed as
described in the Experimental Section. Samples were analyzed by flow
cytometry (n = 3; *P < 0.05, one-way ANOVA/Dunnet’s versus
solvent vehicle control) and confocal fluorescence microscopy (B).
Representative pictures are shown.

since Kupchan et al. showed that the antileukemic activity of
the bruceolide derivatives already varies widely with differences
in the ester substituent.®

In conclusion, we find eurycomalactone to be a highly
interesting natural product that warrants further research.
Possibly new approaches including ribosome profiling as used
previously to shed new light on the mechanism of action of
macrolide antibiotics will show how specific or unspecific
quassinoids in general and/or eurycomalactone in particular act
on eukaryotic protein synthesis.””**

B EXPERIMENTAL SECTION

Cell Culture. Immortalized human umbilical vein endothelial cells
(HUVECtert)*” (kindly provided by H. Stockinger, Medical
University of Vienna, Austria) were used until passage 15 in basal
endothelial cell growth medium with phenol red (Lonza, Switzerland).
The medium was supplemented with 100 U/mL benzylpenicillin
(Lonza, Switzerland), 100 yg/mL streptomycin (Lonza, Switzerland),
1% amphotericin B (Lonza, Switzerland), 10% fetal bovine serum
(Gibco, Germany), and the following SingleQuots from Lonza,
Switzerland: hEGF, hydrocortisone, gentamicin, bovine brain extract,
and ascorbic acid. Cells were cultured at 37 °C and 5% CO, in a
humidified atmosphere in precoated (0.1% gelatin in phosphate-
buffered saline, PBS) cell culture flasks. Control cells were always
treated with an equal volume of solvent.

Cell Viability. Cells were seeded into precoated (0.1% gelatin in
PBS) 48-well plates at a density of 2 X 10* cells/well and grown for 48
h. Then cells were incubated with either medium alone or medium
supplemented with solvent vehicle (0.1% DMSO), the indicated
concentrations of 1, or digitonin as a positive control (100 ,ug/mL).
After 18 h supernatants were removed, and cells washed once with
PBS and then incubated for 2 h with 10 ug/mL Resazurin (Sigma-
Aldrich, Austria) in PBS. Metabolic activity through conversion of
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resazurin was measured as an increase in fluorescence at a wavelength
of 590 nm (excitation wavelength: 535 nm) using a multiplate reader
(Tecan, Austria). Results are shown relative to the conversion rate of
the solvent vehicle treatment.

Flow Cytometry. Flow cytometric measurements were performed
as described previously.** FITC-labeled antibodies (anti-VCAM-1 (BD
Biosciences, Vienna, Austria), anti-ICAM-1, and anti-E-selectin
(eBioscience, Vienna, Austria)) were used to stain cells for analysis
with a FACSCalibur (BD Biosciences, Vienna, Austria) flow
cytometer. Results are shown relative to the expression levels of
adhesion molecules of TNFa-stimulated control cells.

SDS-Polyacrylamide Electrophoresis and Immunoblot Anal-
ysis. Cells were seeded into precoated (0.1% gelatin in PBS) 10 cm
dishes at a density of 0.5 X 10° cells for the indicated time and then
preincubated with 1 (2 uM), cycloheximide (1 M), or solvent vehicle
(0.1% DMSO) and subsequently stimulated with TNFa (10 ng/mL)
where indicated. Protein extraction, SDS-polyacrylamide electro-
phoresis, and immunoblot analysis was performed as described.”
For immunoblot analysis the following antibodies were used: anti-
cyclin D, anti-survivin, anti-IkBa, anti-phospho-IKKa/f, anti-phospho-
IkBa, and anti-p6S (Cell Signaling Technology, Danvers, MA, USA),
anti-pS3 (Delta Biolabs, Gilroy, CA, USA), anti-cyclin A (Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-lamin (Abcam, Cambridge,
UK), anti-actin (MP Biomedicals, Illkirch, France), and anti-tubulin
(Santa Cruz Biotechnology). All antibodies were diluted following the
recommendation of the providing company. Results are shown relative
to the protein levels of unstimulated control cells.

mRNA Isolation and Quantitative RT-PCR (qRT-PCR). A total
of 0.5 X 10° cells were grown in precoated (0.1% gelatin in PBS) 10
cm dishes for 48 h and then preincubated for 30 min with either 1 (5
or 0.5 uM), parthenolide (10 M), cycloheximide (10 yg/mL to 3S
uM), or solvent vehicle (0.1% DMSO) and stimulated with TNFa (10
ng/mL) for 4 h (VCAM-1 and ICAM-1) or 2 h (E-selectin). For
cyclin D1 quantification cells were incubated with either 1 (2 uM),
cycloheximide (1 4M), or solvent vehicle (0.1% DMSO) for 0.5—4 h.
RNA isolation and subsequent cDNA synthesis were performed
according to the instructions of the respective kit manufacturer
(Peqlab, VWR International GmbH, Erlangen, Germany). The real-
time SybrGreen-based quantitative PCR was carried out in a reaction
volume of 15 uL (30 ng). Forward and reverse primer mixtures for
human VCAM-1, human ICAM-1, human E-selectin, and human
cyclin D1 as target genes were obtained from Qiagen (Qiagen, Hilden,
Germany). Reference gene human 18§ RNA was obtained from
Qiagen (Qiagen, Hilden, Germany), and human actin B (fwd: TCA
AGG TGG GTG TCT TTC CT; rev: CTG CTG TCA CCT TCA
CCG TT) was obtained from Invitrogen (Carlsbad, CA, USA). PCR
contained one denaturation step (5 min at 95 °C) and up to SS
amplification cycles (denaturation: 10 s at 95 °C, annealing 20 s at S5
°C, and elongation 30 s at 72 °C). Melting curves of the amplified
DNA were analyzed to make sure that the PCR resulted in
amplification of one specific product only, which was reconfirmed
by a single distinct band on an agarose gel. Data were analyzed using
Light Cycler LC480 software (Roche Diagnostics, Vienna, Austria)
and the 2724 method.

Click-iT OPP Alexa Fluor488 Protein Synthesis Assay for
Confocal Fluorescence Microscope. All described Click-iT
reagents and Nuclear Mask were part of the Click-iT OPP Alexa
Fluor 488 protein synthesis assay kit (Invitrogen). Cells were seeded at
a density of 8 X 10* cells/well onto gelatin-coated coverslips in 12-well
plates for 24 h. On the following day, cells were stimulated with 1 (S
or 2 uM), cycloheximide (35, 3.5, or 1 uM), or solvent vehicle (0.1%
DMSO) for 30 min. After preincubation, 20 uM Click-iT OPP reagent
was added for a further 30 min. The coverslips were washed once with
PBS and fixed with 3.7% formaldehyde in PBS (Sigma-Aldrich, Vienna,
Austria) for 15 min followed by permeabilization with 0.5% Triton X-
100 in PBS (Sigma-Aldrich, Vienna, Austria) for a further 15 min at
room temperature. After two washing steps with PBS, the coverslips
were light-protected incubated with freshly prepared Click-iT Plus
OPP Alexa 488 reaction cocktail for 30 min. To remove excess
reaction cocktail, coverslips were washed once with Click-iT reaction
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rinse buffer followed by DNA staining with Nuclear Mask Blue Stain
for 30 min. The coverslips were washed twice with PBS and mounted
on a glass slide using Fluoromount mounting medium (Sigma-Aldrich,
Vienna, Austria). After drying for 2 h at room temperature the
specimens were analyzed by using the fluorescence unit of the confocal
fluorescence microscope (Leica Microsystems, Wetzlar, Germany). All
samples were detected with 10X magnification, constant gain, and
exposure time.

Click-iT OPP Alexa Fluor488 Protein Synthesis Assay for
Flow Cytometer. All described Click-iT reagents were part of the
Click-iT OPP Alexa Fluor 488 protein synthesis assay kit (Invitrogen,
Carlsbad, CA, USA). Detailed sample preparation occurred as
described above. Cells were seeded at a density of 1 X 10° cells
directly into flow cytometer tubes and centrifuged for 4 min at 274g.
After stimulation and incubation with Click-iT OPP reagent cells were
fixed and permeabilized. Afterward, cells were washed twice with wash
buffer (24.8 mM Tris base, 190 mM NaCl, 1% Tween 20, pH 7.4) and
light-protected-incubated with freshly prepared Click-iT Plus OPP
Alexa 488 reaction cocktail. Excess reaction cocktail was removed by
washing the tubes once with Click-iT reaction rinse buffer and two
times with wash buffer. Cells were resuspended in assay buffer (24.8
mM Tris base, 190 mM NaCl, pH 7.4) and directly measured with a
FACSCalibur (BD Biosciences, Vienna, Austria) flow cytometer (FL-1
channel). Results are shown relative to the protein synthesis levels of
control cells.

Nuclear Translocation of NF-kB p65. A total of 0.5 X 10° cells
were grown in precoated (0.1% gelatin in PBS) 10 cm dishes for 48 h
and then preincubated for 30 min with either 1 (2 uM) or solvent
vehicle (0.1% DMSO). Then, where indicated, TNFa (10 ng/mL) was
added for 1 h.

To separate nuclear from cytosolic proteins, the dishes were first
washed with cold PBS and then treated with 200 uL of buffer 1 (10
mM HEPES pH 7.5, 0.2 mM EDTA, 10 mM KCl, 1% NP40 (Igepal),
1 mM DTT, 0.5 mM PMSF, Complete (Roche, Switzerland)). Cells
were scraped together, transferred into a microtube, and incubated for
15 min on ice, with vigorous vortexing every 2—3 min. Then the cell
lysates were centrifuged in a table-top centrifuge for S min at 16200g.
The supernatant was collected as a cytosolic fraction. The pellets were
washed once with buffer 1, then resuspended in 100 uL of buffer 2 (20
mM HEPES pH 7.5, 1,1 mM EDTA, 420 mM NaCl, 1 mM DTT,
PMSF, and Complete (Roche, Switzerland)), and incubated on ice for
1S min with vigorous vortexing every 2—3 min, followed by
centrifugation for S min at 16200g. After that the supernatant was
combined with 100 L of buffer 3 (20 mM HEPES pH 7.5, 1,1 mM
EDTA, 100 mM KCl, 20% glycerol, 1% NP 40, 1 mM DTT,
Complete, and PMSF), representing nuclear proteins. Isolated
cytosolic and nucleic proteins were both stored at —80 °C. The
separation was validated by immunoblotting of anti-tubulin and anti-
lamin.

Statistical Analysis. Bar graphs represent means + SD. Statistical
analyses were performed using GraphPad Prism (GraphPad Software
Inc, La Jolla, CA, USA). Statistical differences among the treatment
groups were compared using one-way ANOVA with Dunnet’s multiple
comparisons tests. P-values of <0.05 were considered as significant.
Nonlinear regression (sigmoidal dose response) was used to calculate
ICs values.
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