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Abstract  

The pathogenic protozoan T. brucei alternates into distinct developmental stages in 

the mammalian and insect hosts. The mitogen-activated protein kinase (MAPK) 

signaling pathways transduce extracellular stimuli into a range of cellular responses, 

which ultimately lead to the adaptation to the external environment. Here, we 

combined a loss of function approach with stable isotope labelling with amino acids 

in cell culture (SILAC)-based mass spectrometry (MS) to investigate the role of the 

mitogen-activated kinase kinase 5 (MKK5) in T. brucei. The silencing of MKK5 

significantly decreased the proliferation of procyclic forms of T. brucei. To shed light 

into the molecular alterations associated with this phenotype, we measured the total 

proteome and phosphoproteome of cells silenced for MKK5. In the total proteome, 

we observed a general decrease in proteins related to ribosome and translation as 
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well as down-regulation of several components of the fatty acid biosynthesis 

pathway. In addition, we observed alterations in the protein levels and 

phosphorylation of key metabolic enzymes, which point toward a suppression of the 

oxidative metabolism. Taken together, our findings show that the silencing of MKK5 

alters cell growth, energy metabolism, protein and fatty acid biosynthesis in procyclic 

T. brucei. 

Keywords 

mitogen-activated protein kinase kinase 5 (MKK5), T. brucei , proteomics, 

phosphoproteomics, energy metabolism, fatty acids biosynthesis. 

Introduction 

The Kinetoplastida protozoan Trypanosoma brucei is the causative agent of African 

trypanosomiasis, also known as sleeping sickness. During its complex life cycle, T. 

brucei alternates into distinct developmental stages in the mammalian and insect 

hosts1. In order to adjust to the different environment, major metabolic and 

morphological changes are required. In this context, post-translational modifications 

(e.g. protein phosphorylation) represent a dynamic mechanism that can mediate the 

prompt adaptation to the conditions encountered in each host, such as temperature, 

nutrient availability and pH2. In fact, in trypanosomatids kinases belonging to the 

CMGC and STE groups, which comprise the mitogen-activated protein kinase 

(MAPK) signaling pathways, are overrepresented in comparison to humans3. The 

MAPK pathway transduce external signals into cellular responses, leading to 

changes in cell proliferation, survival and morphology, which ultimately 

accommodate the cellular physiology to the new environment4. In these intricate 

signaling cascades, a MAP kinase kinase kinase kinase (MKKKK, MAPKKKK, 
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3 

MAP4K or STE20) phosphorylates and activates a MAP kinase kinase kinase 

(MKKK, MAPKKK, MAP3K or STE11), which in turn phosphorylates and activates a 

MAP kinase kinase (MKK, MAPKK, MAP2K or STE7) that then phosphorylates the 

conserved threonine and tyrosine residues located in the activation loop of a MAP 

kinase (MAPK)4,5. In T. brucei, the MAPK pathway is composed by 2 MKKKK, 15 

MKKK, 5 MKK and 15 MAPK3. To date, seven T. brucei MAPK have been studied 

and their involvement in a variety of cellular functions demonstrated. The MAPK 

KFR1 participates in the response to interferon-gamma in bloodstream forms6; 

MAPK2 is required for the differentiation into procyclic forms7; TbECK1 modulates 

cell growth in procyclic forms8; TbMAPK5 controls virulence and differentiation of 

bloodstream forms9; TbMAPK4 confers resistance to temperature stress in procyclic 

forms10, TbERK8 is required for cell growth in bloodstream forms11 and MAPKLK1 is 

required for proliferation in procyclic forms12. From the five MKK proteins of T. 

brucei, MKK1 and MKK5 have been previously studied. The knockout of these genes 

in bloodstream forms did not cause changes in cell growth in standard culture 

conditions; however, defects in proliferation were observed upon exposure to 

temperature stress13. Interestingly, in the same work, western blot analysis 

suggested that MKK5 expression is higher in the procyclic than in the bloodstream 

forms of T. brucei13, which may indicate that the role of this protein is developmental 

stage-specific. To date, the function of MKK5 in procyclic forms of T. brucei has not 

yet been addressed. The combination of quantitative proteomics and 

phosphoproteomics with perturbation of kinases and phosphatases is a powerful 

approach to discover the pathways and substrates regulated by these proteins at a 

systems level12,14-16. Here, we combined a loss of function approach with SILAC-

based proteomics and phosphoproteomics to uncover the role of MKK5 in procyclic 
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forms of T. brucei. Our results revealed that the silencing of MKK5 induces 

significant changes in the proliferation, in the total levels and phosphorylation of 

translation, fatty acid biosynthesis and energy metabolism-related proteins, thus 

indicating that this kinase is involved in the maintenance of homeostasis in procyclic 

forms of T. brucei. 

Materials and Methods 

MKK5 RNAi plasmid design, cloning and transfection 

The DNA sequence of MKK5 (gene ID Tb927.10.5270 or Tb10.70.1800, Uniprot ID 

Q38B76) of T. brucei brucei TREU 927 was retrieved from GeneDB database. The 

selection of a specific target region for RNAi and the design of primers were 

performed using the web tool RNAit from TrypanoFAN using the default settings17. 

The resulting primers, MKK5 forward 5’-AAGTTCACAGGTCAAACCCG-3’ and 

MKK5 reverse 5’-GTTCAGCAACAAGACCA-3’, were used to amplify by PCR the 

RNAi target region from the genomic DNA of T. brucei Lister 427. The PCR reaction 

was performed using 1 U of Taq DNA polymerase high fidelity (Invitrogen), Platinum 

Taq buffer, 2 mM MgSO4, 0.4 mM of each primer, 10 mM dNTPs and 100 ng of 

genomic DNA as template. The PCR was performed using one cycle of 94 °C during 

2 minutes, followed by 30 cycles of 94 °C during 30 seconds, 55 °C for 30 seconds 

and 68 °C for 1 minute; a final extension cycle of 68 °C during 5 minutes was 

employed. Prior to cloning, the PCR products were purified using the High pure PCR 

product purification kit (Roche) following the manufacturer's instructions and run in a 

0.8% agarose gel for confirmation of the amplicon size. The PCR product was 

cloned in a modified version of the p2T7-177 plasmid18, which contained the LacZ 

gene instead GFP. The LacZ cassete of the modified p2T7-177 plasmid was flanked 

by two XcmI restriction sites, providing ’T’ overhangs after digestion with XcmI, which 
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are then cohesive with the ‘A’ extremities of the PCR products, thus allowing to use 

the TA cloning strategy. Moreover, the LacZ gene allows screening the positive 

colonies by color. For digestion, 2 µg of the plasmid, 10 U of XcmI (New England 

Biolabs), and NEB2 buffer were used, the reaction was incubated at 37 °C for 2h, 

followed by heat inactivation at 65 °C for 20 minutes. The digestion of the plasmid 

was confirmed using a 0.8% agarose gel and the corresponding band of the vector 

was excised and purified from the gel. The vector-insert ligation was performed using 

1 U of T4 DNA ligase (Invitrogen), ligase buffer, 50 ng of the vector and 1:10 molar 

ratio vector-insert overnight at 16 °C. The resulting plasmids were transfected by 

heat shock into DH5α cells. Positive clones were screened by colony PCR and the 

RNAi target sequence was confirmed by DNA sequencing. From now on, the 

resulting RNAi MKK5-p2T7177 plasmid to silence MKK5 in T. brucei will be referred 

as MKK5 RNAi plasmid. Prior to transfection, 5 µg of the MKK5 RNAi plasmid was 

linearized using 8 U of NotI HF (New England Biolabs), NEB4 buffer, and BSA at 37 

°C for 16 hours, followed by heat inactivation at 65 °C for 20 minutes. The linearized 

MKK5 RNAi plasmid was transfect by electroporation into procyclic forms of T. brucei 

brucei Lister 427 clone 29-1319. For transfection, 4 x 107 cells were washed in 

electroporation buffer (129 mM NaCl, 1.5 mM KH2PO4, 8 mM KCl, 8 mM NaH2PO4, 

1.5 mM MgCl2, 0.09 mM CaCl2, 2.4 mM CH3COONa, pH 7.0), spin at 5,000 x g, 5 

min at 4 °C and resuspended in 400 µl of the electroporation buffer in a 0.4 cm 

cuvette (BioRad). Then, 10 µg of linearized plasmid DNA was added to the cuvette 

and incubated on ice for 10 min. The cuvettes were subject to two pulses of 

electroporation (1.6 kV, 25 µF, and time constant of 0.8 s) in a Gene Pulse II 

Electroporation System (BioRad). The resulting transfected cells were cultured in the 

medium SDM-79 (LGC Biotecnologia)20, supplemented with 10% FBS (Gibco), 15 
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µg/ml of G418 (Sigma) and 50 µg/ml of hygromycin (Sigma) and incubated at 28 °C 

in 5% of CO2. The selection was performed using 2.5 µg/ml of phleomycin (Sigma). 

The transcription of the double-stranded RNAi to silence MKK5 is under control of 

two T7 promoters; to trigger the RNAi mechanism 2 µg/ml of tetracycline (Sigma) 

were added in the first day, and 1 µg/ml was added daily in the course of the 

experiments. 

RT-qPCR 

To determine MKK5 silencing efficiency we used RT-qPCR. Procyclic forms of T. 

brucei transfected with the MKK5 RNAi plasmid were treated (Tet+) or not (Tet-) with 

tetracycline for 3 and 4 days. The total RNA was isolated from 1 × 108 cells using 

RNeasy Kit (Qiagen) according to manufacturer’s instructions. The cDNA synthesis 

was performed using 1 µg of RNA and 1 µM oligo dT, incubated for 10 min at 70 °C. 

Next, 2 µl of Improm-II buffer (Promega), 6 mM MgCl2, 10 mM dNTPs, 20 U 

RNaseOUT (Life Technologies) and 2 µl Improm-II Reverse 

Transcriptase (Promega) were mixed in a final volume of 20 µl and incubated for 2 h 

at 42 °C. The resulting product was purified using Microcon YM-30 (Millipore) and 

resuspended in water at a concentration of 2 ng/µl. The primers used to amplify 

MKK5 were designed using PrimerSelect in the DNAstar software and their 

efficiency was assessed using a standard curve. The primers anneal at the 3’-UTR 

of MKK5 transcript, Tm 60 °C. In each RT-qPCR reaction, 0.5 µM of the forward 5’-

GGTGTAGAACGACATGTGTATTTATTTTAGGTG- 3’ and reverse 5’- 

GTCCTCTCACAGTCCTTGCCCG- 3’ primers was used, together with 10 ng of 

template and 10 µl of SYBR green (Life Technologies). For normalization, the 

expression levels of Actin, paraflagellar rod protein (PFR) and telomerase reverse 

transcriptase (TERT) were assessed21. The reactions were carried out in triplicates 
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with appropriated non-targeting controls using the Applied Biosystems 7500 Real-

Time PCR System. The analysis was performed using the average of the normalized 

MKK5 mRNA levels for each housekeeping gene and the remaining levels of MKK5 

in the Tet+ cells expressed as a percentage of the MKK5 levels found in the Tet- 

cells.  

Growth curves 

To investigate the impact of MKK5 silencing in the cell growth of procyclic forms of T. 

brucei we evaluated the growth rate of cells silenced or not for MKK5. For this, two 

distinct strategies were employed. In the first one, the cell density was assessed 

every day until cells reached the stationary growth phase using a Neubauer 

chamber. In the second strategy, cell density was measured every two days using a 

Z2 Coulter cell counter (Beckman Coulter), followed by a dilution of the original 

culture to 1 x 106 cells/ml. In the second set-up, the cell growth was assessed for 10 

days and cells were kept in exponential growth phase.  

 MS sample preparation 

To accurately quantify the global changes induced by MKK5 silencing in T. brucei we 

used a SILAC-based approach12,22-24. The SDM-79 medium without lysine and 

arginine was prepared in house20. Procyclic forms of T. brucei transfect with the 

MKK5 RNAi plasmid were cultivated in SDM-79 SILAC medium supplemented with 

10% 10 kDa dialysed FBS (Sigma), 15 µg/ml of G418 (Sigma) and 50 µg/ml of 

hygromycin (Sigma) either in the presence of ‘unlabelled’ lysine and arginine (Arg0 

and Lys0) or in the presence of the ‘labelled’ counterparts (Arg10 and Lys4). In total, 

18 mg/l of lysine and 53.75 mg/l of arginine were used. After incorporation of the 

labelled amino acids (4 days in culture in the SILAC medium), cells were treated with 

2 µg/ml of tetracycline in the first day of RNAi induction and with 1 µg/ml of 
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tetracycline in the subsequent three days. Four days post induction, cells were 

harvested and the same number of MKK5 silenced cells (Tet+) was mixed to the 

control cells (Tet-). The experiments were performed in biological triplicates. The 

cells were washed twice with PBS and spin at 8,000 x g for 5 minutes at 4 °C. The 

resulting pellet was lysed in 8M urea buffer containing protease and phosphatase 

inhibitors (Thermo) and the pH was adjusted to 8. For reduction and alkylation, the 

protein mixture was treated with 1 mM DTT (Sigma) for 1h, room temperature; 

followed by 5.5 mM IAA (Sigma) treatment for 45 minutes, room temperature, 

protected from light. Subsequently, sample was diluted 1:6 in 50mM ABC 

(ammonium bicarbonate) and digested overnight with 2.5 µg of Trypsin (Promega). 

In the following day, the tryptic peptides were acidified to pH 2.5 with TFA (Sigma). 

For the analysis of the total proteome, 10 µg of the resulting peptides were desalted 

in C18 stage-tips25,26. For the analysis of the phosphoproteome, TiO2-based 

phospho-enrichment was performed. The TiO2 beads (GL Sciensces) were 

resuspended in TiO2 buffer (30 mg/ml DHB, 80% ACN, 0.1% TFA) at a concentration 

of 500 µg/µl. The mixture was incubated for 10 min at 600 rpm. Subsequently, the 

beads were added to the peptides at a 5:1 ratio and incubated during 1h in rotor 

wheel at room temperature. Then, the mixture was spin at 3,000 rpm and the 

supernatant was collected and subjected to two additional rounds of incubation with 

TiO2 beads. The phosphopeptides bound to the TiO2 beads were resuspended in 

washing buffer I (30% ACN, 3% TFA), placed in a C8 stage-tip and spin at 2,600 rpm 

for 2 minutes. The wash with washing buffer I was repeated. Subsequently, three 

washes with washing buffer II (80% ACN, 0.3% TFA) were performed. Three 

sequential elution with 15% ammonium hydroxide in 40% ACN were performed. 
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Samples were speed vacuum dried to eliminate the ACN and resuspended in buffer 

A (0.5% acetic acid). Then, phosphopeptides were purified in C18 stage-tips25,26. 

MS data acquisition 

The peptides were loaded onto an EASY-nLC system (Thermo Fisher Scientific) 

coupled online to the mass spectrometer Q-Exactive HF (Thermo Fisher Scientific). 

The chromatography was carried out in a  20 cm fused silica emitter, 75 µm inner 

diameter (New Objective) packed in house with Reprosil Pur Basic 1.9 µm (Dr. 

Maisch GmbH). For peptide elution, buffer A (0.1% formic acid) and Buffer B (80% 

ACN, 0.1% formic acid) were used. For the total proteome, a 250 min gradient of 300 

nl/min with 2% to 30% buffer B was used. For each fraction of the phosphoproteome, 

a 120 min gradient of 300 nl/min with 2% to 42% buffer B was used. The eluting 

peptides were ionized and injected into the mass spectrometer via electrospray, 

spray voltage 2.1 kV, capillary heater 200 °C. The mass range for the full MS scan 

was 375-1,500 m/z with a resolution of 60,000 at 250 Th. From total proteome and 

phosphoproteome fractions, the top 15 and top 10 most intense ions, respectively, 

were isolated for higher-energy collision dissociation (HCD) fragmentation. The mass 

window for precursor ion selection was 1.4 m/z. The threshold for triggering MS2 

was 1.8E5 for the total proteome and 1.0E4 for the phosphoproteome. The relative 

collision energy used was 27 and the mass resolution for the MS2 was 15,000. The 

singly charged ions were excluded and the ions that have been isolated for MS/MS 

were added to an exclusion list for 30 sec (total proteome) and 20 sec 

(phosphoproteome fractions). MS data were acquired using the Xcalibur software 

(Thermo Fisher Scientific) and raw data was processed using the MaxQuant 

computational platform.  

MS data processing and analysis 
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10 

MaxQuant software version 1.5.0.36 coupled to the Andromeda search engine27,28 

were used to process the raw data with the following settings: Multiplicity 2 (labels 

Arg10 and Lys4); variable modifications Acetyl (Protein N-term), Oxidation (M) and 

Phospho (STY); fixed modification Carbamidomethyl (C); digestion mode Trypsin, 

maximum 2 missed cleavages. The re-quantify parameter was enabled. The curated 

reference proteome used for peptide identification was downloaded from 

Uniprot Trypanosoma brucei TREU 927 (8,587 entries). For identification, the false 

discovery rates (FDRs) at the protein and peptide level were set to 1%. For 

quantification, only unique peptides with minimum 2 ratio counts were used. The 

analysis of the data was done using Perseus version 1.5.2.1129. Reverse peptides, 

potential contaminants and only identified by modification site (for the proteome) 

were removed. Only the class 1 phosphosites, as determined by localization 

probability ≥ 0.75 and score difference > 5, were considered for the analysis. The 

normalized SILAC ratios from the MaxQuant tables of each biological replicate were 

log2 transformed and the intensities log10. For downstream analyses, we required 

that proteins and phosphosites were quantified in at least two out of three biological 

replicates. The up-regulated and down-regulated proteins were defined based on the 

Significance B statistical test (Benjamini-Hochberg FDR 5%)27, which was calculated 

for each replicate separately. We considered as regulated proteins and 

phosphorylation sites significantly regulated in at least two out of three individual 

biological replicates and with standard deviation lower than the averaged SILAC 

ratio. To determine the Gene Ontology (GO) categories enriched among the subset 

of up-regulated and down-regulated proteins we used Fisher’s test (Benjamini-

Hochberg FDR 5%). For the protein-protein interaction analysis, we used the Uniprot 

IDs of the regulated proteins and phosphorylation sites for the search in STRING, 
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11 

version 10.0, using the default settings30. The output files were uploaded in 

Cystoscape Version 3.4.0 for visualization of the networks. The mass spectrometry 

proteomics and phosphoproteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset 

identifier PXD007910. 

 

Results 

The silencing of MKK5 is detrimental to the proliferation of procyclic forms of 

T. brucei  

To investigate the role of MKK5 in procyclic forms of T. brucei we have used a stable 

inducible RNAi-based loss of function approach. For this, we selected a target region 

unique for MKK5 using the web tool RNAit17. This fragment was amplified by PCR 

and cloned into a modified version of the vector p2T7-17718. Procyclic forms of T. 

brucei were transfected by electroporation with the MKK5 RNAi plasmid. After 

selection, the MKK5 silencing was induced via addition of tetracycline in the cultures 

and cells were used for functional experiments (Figure 1 A).  

To assess the silencing efficiency, we isolated the mRNA from cells treated or not 

with tetracycline for three and four days and the levels of remaining MKK5 transcripts 

were determined by RT-qPCR. At day three, the remaining levels of MKK5 were 

approximately half than those observed in control cells, whereas at day four, only 

25% of MKK5 mRNA was still present in comparison to the control cells (Figure 1 B). 

Subsequently, to investigate the role of MKK5 in the proliferation of procyclic forms 

of T. brucei, we evaluated the growth rate of parasites silenced or not for MKK5 

growing in SDM-79 supplemented with dialyzed serum using two different 

approaches. In the first one, we continuously measured the number of cells in a time 
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12 

course until the parasites reached the stationary phase of growth. In the second set-

up, parasites were maintained in exponential phase of growth and the cell density 

was measured every second day from day 2 to day 10 post-induction, which allowed 

to assess the effects of MKK5 silencing for longer. In both experimental conditions 

the silencing of MKK5 significantly decreased the growth rate of procyclic T. brucei 

(Figures 1C and 1D). We next investigated the growth of procyclic cells in SDM-79 

supplemented with regular FBS, and also in this condition we observed a significant 

decrease in the growth rate (Figure 1E). To shed light into the molecular alterations 

underpinning the defects in cell proliferation upon MKK5 silencing we employed an 

unbiased SILAC-based MS approach. This workflow allows an accurate 

quantification of the proteins and phosphorylation sites modulated upon MKK5 

knockdown (Figure 2).  

SILAC medium 

To replace the unlabeled lysine and arginine amino acids by the heavy isotope-

labelled counterparts, we have prepared in house the SDM-79 medium without these 

amino acids. To determine whether the medium prepared in house was suitable for 

T. brucei culture, we compared the growth of T. brucei in our medium with the 

commercially available one from LGC. Our results show that the ability of T. brucei to 

grow in both commercial and in house prepared SDM-79 culture medium was 

indistinguishable (Supplementary figure 1A). Subsequently, to decrease the costs 

related to the labelled amino acids, we conduct growth tests using 50%, 25%, 12.5% 

of the original concentration of lysine and arginine. We observed that when we used 

50% or 25% of the original concentration of lysine or arginine present in the 

conventional SDM-79 medium there was no significant differences in the growth of 

the parasites. We only observed proliferation defects when the concentration was 
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decreased to 12.5% or when lysine and arginine were completely removed 

(Supplementary figures 1B and 1C). Likewise, when using 25% of both lysine and 

arginine the proliferation of T. brucei was comparable to the counterpart cells 

growing in the medium containing the full amount of these amino acids 

(Supplementary figure 1D). Additionally, we tested the incorporation rate of labelled 

amino acids using 100%, 50% and 25% or the original concentration of lysine and 

arginine and we observed that the rate of labelled amino acids incorporation was 

efficient in the three conditions: more than 98% of the peptides were labelled after 4 

days growing in the SILAC medium.  

Global proteomics and phosphoproteomics analysis of MKK5 knockdown cells 

reveals alterations in translation, fatty acid biosynthesis and energy 

metabolism-related proteins and phosphorylation sites 

In the SILAC-based total proteome of T. brucei silenced for MKK5, we 

unambiguously identified 3,965 proteins and accurately quantified 3,024 proteins in 

at least 2 out of 3 biological replicates (Supplementary Table 1). To determine in an 

unbiased manner alterations in the abundance of proteins belonging to specific gene 

ontology categories we used the 1D enrichment analysis31, and found that the 

abundance of proteins related to ribosome and translation was significantly reduced 

upon MKK5 silencing. These include the GOMF structural constituent of ribosome 

(p-value 6.73E-26), GOCC ribonucleoprotein complex (p-value 1.72E-24), GOBP 

translation (p-value 4.85E-24) and GOCC ribosome (p-value 8.29E-24) (Figure 3).  

Subsequently, to ascertain the significantly up-regulated and down-regulated 

proteins upon MKK5 silencing we used the significance B test in each replicate 

separately (Benjamini-Hochberg FDR 0.05). In the supplementary table 1, we have 

indicated the regulated proteins and reported the FDRs for each individual replicate. 
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To determine the reproducibly regulated proteins, we required that the regulation 

occurred in at least two out of the three biological replicates and that the standard 

deviation was lower than the averaged SILAC ratio. Using this cut-off we found 11 

proteins significantly up-regulated and 27 proteins down-regulated (Figure 4A and 

Table 1).  

To determine the gene ontology (GO) categories and KEGG pathways 

overrepresented in the subset of regulated proteins, we conducted an enrichment 

analysis. Among the up-regulated proteins, the KEGG pathway TCA cycle was 

enriched (Figure 4B). In the subset of down-regulated proteins, GO categories and 

KEGG pathways related to fatty acid biosynthesis, endoplasmic reticulum (ER), 

carboxylic acid metabolic process and transferase activity were enriched, thus 

indicating these functions were reduced in procyclic cells silenced for MKK5  (Figure 

4C).  

Next, to determine the changes induced by the silencing of MKK5 in the 

phosphoproteome of T. brucei and therefore to gain insights regarding the potential 

targets of this kinase, we used a sequential TiO2-based enrichment coupled to 

SILAC-based MS. Using 250 µg of starting material and three sequential TiO2 

incubations, we identified 1,482 class 1 phosphosites: 1,267 on serine residues 

(85.5%), 208 on threonine (14.0%) and 7 on tyrosine (0.05%). The 914 phosphosites 

quantified in at least 2 out of 3 biological replicates were used for downstream 

analyses (Supplementary table 2). We normalized the levels of the phosphorylation 

sites to the total levels of the corresponding protein when it was quantified in the total 

proteome. For those sites where the total levels of the corresponding protein were 

not quantified we maintained the SILAC ratio value for the phosphorylation site. In 

total, 88.7% of the phosphorylation sites could be normalized and are indicated in 

Page 14 of 32

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15 

the Supplementary table 2. Then, to determine the significantly and reproducibly 

regulated phosphorylation sites we used the same criteria previously described for 

the total proteome. This analysis resulted in 24 phosphorylation sites significantly up-

regulated and 8 significantly down-regulated (Table 2). The most up-regulated and 

down-regulated phosphorylation sites, respectively, were on the serine 284 of the 

alpha subunit of pyruvate dehydrogenase E1 (PDHE1α) and on the serine 207 of the 

delta subunit of the eukaryotic translation initiation factor 2B (eIF2B δ) 

Supplementary figure 2). Interestingly, these residues are conserved with the 

corresponding human proteins (Supplementary figures 3 and 4). Moreover, proteins 

that can influence rearrangements of the cytoskeleton, intracellular trafficking and 

cell migration were differentially phosphorylated. This was the case for the up-

regulated phosphorylation sites on serine 95 of beta tubulin (Q4GYY6), threonine 

757 of intraflagellar transport protein IFT88 (Q386Y0), serine 2,053 of the 

microtubule-associated protein (Q389U9) and the down-regulated site on the serine 

469 of kinesin-like protein (Q38CW6). Additionally, ubiquitin-related proteins had 

phosphorylation levels increased upon MKK5 silencing, these sites were on the 

serine 2 of ubiquitin-fold modifier 1 (Q57UL0), serine 9 of ubiquitin carboxyl-terminal 

hydrolase (Q385P1) and serine 184 of ubiquitin carboxyl-terminal hydrolase 

(Q583R5). 

Finally, in order to integrate the proteomic and phosphoproteomic data and to gain 

insights regarding the functional relationship among the regulated proteins and 

phosphorylation sites we used STRING. In the network generated from this analysis, 

we can observe that several mitochondrial proteins involved in energy metabolism 

were linked. Additionally, components of the fatty acid biosynthesis pathway and 

cytoskeleton/cell motility-related proteins were connected (Figure 5). 
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Discussion 

Here, we show for the first time the involvement of the protein MKK5 in cell growth, 

energy metabolism, translation and fatty acid biosynthesis in procyclic forms of T. 

brucei.  

Using different conditions to assess T. brucei the cell growth we found that the 

silencing of MKK5 significantly decreased the proliferation of procyclic cells. The 

effects on cell growth observed in our study were more pronounced when the SDM-

79 medium was supplemented with dialyzed FBS, with more than 30% decrease in 

cell number in comparison to 15% decrease in the presence of regular FBS. This 

finding may suggest that either low molecular weight soluble factors or free amino 

acids found in the regular FBS can function as upstream regulators of this pathway. 

This observation is particularly relevant considering that procyclic T. brucei exist in 

the insect midgut, an environment deprived of glucose, where the energetic needs 

are met via amino acids catabolism. In the literature, the knockout of MKK5 in 

bloodstream forms did not alter the cell growth13, thus indicating that the requirement 

for this kinase is likely developmental stage-specific.  

The global SILAC-based approach employed in our study provided valuable insights 

regarding the role of MKK5. First, using the 1D analysis, we observed a general 

decrease in proteins related to ribosome and translation. Interestingly, the most 

down-regulated phosphorylation site quantified in our study was on the delta subunit 

of the eukaryotic translation initiation factor 2B (eIF2Bδ), which is part of the 

regulatory subcomplex of the holoenzyme. eIF2B is a multi-subunit protein critical for 

the regulation of the initiation of protein synthesis and its activity is inhibited in 

response to different types of stress32,33. The precise role of the phosphorylation site 
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we found regulated on the activity of eIF2B complex is still unknown. One hypothesis 

is that the modulation of this site may regulate protein synthesis initiation and be 

linked to the general decrease in the abundance of proteins related to translation 

observed upon MKK5 silencing. As a future step to characterize this further, 

mutagenesis of this residue coupled to protein synthesis profiling strategies could be 

employed.  

Another interesting finding of our study corresponds to the down-regulation of 

several components of the fatty acid biosynthesis pathway. T. brucei exploits the 

endoplasmic reticulum (ER)-based elongase (ELO) pathway for fatty acid 

biosynthesis34. In this pathway, the enzymes elongases (ELO1-3), which are integral 

membrane proteins residents in the ER, extend the fatty acid chains: ELO1 extends 

C4 to C10, ELO2 extends C10 to C14, and ELO3 extends C14 to C1835. Here, we 

found that the knockdown of MKK5 in T. brucei decreased the protein levels of the 2 

elongases (Q57UP8, Q57UP6); 2 desaturases (Q587G0 and Q57YK1), and of the 

fatty acyl CoA synthetase 2 (Q38FB9). In addition, two other enzymes that provide 

acetyl-CoA for lipid biosynthesis were down-regulated upon MKK5 silencing: 

carnitine O-acetyktransferase (Q386T6) and acetyl-coenzyme A synthetase 

(Q57XD7)36. Because MKK5 silencing alters the protein levels of different 

components of the fatty acid biosynthesis pathway, this kinase could ultimately 

impact key cellular functions, such as energy storage, composition and fluidity of the 

plasma membrane.  

In addition, the silencing of MKK5 altered the total levels and phosphorylation of 

proteins involved in energy metabolism. While bloodstream forms of T. brucei 

produce ATP via glycolysis, the procyclic forms are more flexible; they are able to 

adapt to distinct carbon sources and to produce energy using both the glycolytic and 
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oxidative pathways37,38. In the subset of up-regulated proteins, the KEGG pathway 

tricarboxylic acid (TCA) cycle was enriched and metabolic enzymes of the TCA cycle 

were linked in the STRING-based network. The enzyme citrate synthase (Q388Q5) 

that catalyzes the conversion of acetyl-CoA and oxaloacetate into citrate, the first 

reaction of the TCA cycle; and the enzyme isocitrate dehydrogenase (Q387G0), that 

catalyzes the oxidative decarboxylation of isocitrate, producing alpha-ketoglutarate, 

CO2 and NADH, were up-regulated. Of note, procyclic T. brucei can use parts of the 

TCA cycle for different purposes, such as for the degradation of proline and 

glutamate into succinate, generation of malate for gluconeogenesis and transport of 

acetyl-CoA from the mitochondria to the cytosol for fatty acids biosynthesis39. In fact, 

it has been proposed that the acetyl-CoA produced in the mitochondria can be 

exchanged to the cytoplasm via citrate and then used for lipid synthesis40. Moreover, 

we observed an up-regulation of Succinyl-CoA:3-ketoacid-coenzyme A transferase 

(ASCT), which converts acetyl-CoA into acetate. In this pathway, the acetate 

production occurs in two steps: first, ASCT transfers the CoA of acetyl-CoA to 

succinate, generating acetate and succinyl-CoA, which is then converted into 

succinate by the enzyme succinyl-CoA synthetase41. Noteworthy, the ASCT pathway 

also produces ATP and together with the TCA cycle and the respiratory chain 

comprise the three mitochondrial pathways generating ATP in the insect-stage T. 

brucei 37,38. Intriguingly, the most up-regulated phosphorylation site detected in 

response to MKK5 silencing was on the alpha subunit of pyruvate dehydrogenase 

E1 (PDHE1α), which catalyzes a rate-limiting step in the conversion of pyruvate into 

acetyl-CoA. PDHE1α is part of the pyruvate dehydrogenase complex that links 

glycolysis to the TCA cycle. In procyclic cells, a decreased growth rate was observed 

in cells silenced for PDHE1α37. In humans, the enzymatic activity of the pyruvate 
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dehydrogenase complex is inhibited via phosphorylation of any of the three sites of 

PDHE1α: serine 232, serine 293, and serine 30042. Using multiple sequence 

alignment, we found that the up-regulated phosphorylation site at serine 284 of T. 

brucei PDHE1α aligns with the serine 293 of the human PDHE1α, and out of the 

three regulatory sites of the human enzyme, this is the only one conserved with the 

T. brucei protein. In fact, a previous report that compared the sequence of the 

human PDHE1α with representative species from other taxonomic groups, reported 

one phosphosite for T. brucei43. If this phosphorylation site has also an inhibitory 

function in the pyruvate dehydrogenase complex of T. brucei as it does in the 

human, we can anticipate a decreased production of acetyl-CoA from pyruvate, 

which in turn could impact both ATP production and lipid biosynthesis. Additionally, 

among the down-regulated proteins we found succinate dehydrogenase (Q38EW9), 

an enzyme of the Complex II of the respiratory chain; and, an electron transfer 

protein (Q57YX5). The down-regulation of components of the respiratory chain could 

indicate an overall decrease in the production of ATP using this route. Overall, our 

data suggests that MKK5 silencing affects the metabolic homeostasis of the insect-

stage T. brucei by regulating the total levels and phosphorylation of several 

metabolic enzymes. As a future step to unravel the consequences of MKK5 silencing 

in the overall energy production, metabolomics and tracing studies could prove 

informative. 

The changes in phosphorylation measured in our study are likely an indirect effect of 

MKK5 knockdown, since we did not detect regulated phosphorylation sites within the 

activation loop of MAP kinases, which are the canonical targets of MKK proteins. We 

found the threonine and tyrosine residues located in the activation loop of one MAPK 

(Q381A7) phosphorylated in this study; however, these sites were not regulated 
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upon MKK5 silencing. The fact we did not identify multiple MAPK phosphorylated 

may reflect the amount of starting material used in our study, which was 250 µg. 

Previous phosphoproteomic studies performed in T. brucei that used from 2.5-10 mg 

of starting material have identified from 4 to 9 MAPKs phosphorylated12,24,44. To date, 

in trypanosomatids, two MKK-MAPK pairs have been identified. The orthologue of T. 

brucei MKK5 in Leishmania mexicana has been shown to phosphorylate the MAPK 

LmxMPK4 in vitro45. Moreover, in L. major, MKK1 has been shown to phosphorylate 

MPK3 and these kinases regulate the flagellar length46. To unravel the relationship 

among the components of the MAPK pathway in T. brucei, different protein-protein 

interaction (PPI)-based approaches could prove informative, such as yeast two-

hybrid, co-localization assays or pull-down analyses. 

 

Conclusion 

We have shown for the first time that MKK5 influences the proliferation of procyclic 

forms of T. brucei. Furthermore, we have quantified the molecular alterations at the 

protein and phosphorylation levels upon MKK5 silencing using a SILAC-based MS 

approach. Our work provides a global overview of MKK5-responsive pathways and 

phosphorylation sites, which can be used as a valuable resource to further explore 

the role of this protein. Our findings indicate that MKK5 regulates cell growth, protein 

translation, fatty acids biosynthesis and energy metabolism-related proteins and 

phosphosites. Collectively, these findings can open new avenues to be explored in 

future work to dissect the mechanistic role of this kinase. 
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Supplementary figure 1: Comparison of the growth of procyclic T. bucei in the 

commercial SDM-79 from LGC with the SDM-79 produced in house and evaluation 

of cell growth using decreasing concentration of lysine (K) and arginine (R). 

Supplementary figure 2: Annotated spectra of the most regulated phosphorylation 

sites on eIF2B δ and PDHE1α. 

Supplementary figure 3: The phosphorylation site on serine 207 of T. brucei eIF2B 

δ (Q4FKA6) aligns with the serine 181 of human eIF2B δ (Q9UI10). 

Supplementary figure 4: The phosphorylation site on serine 284 of T. brucei 

PDHE1α (Q388X3) aligns with the serine 293 of human PDHE1α (P08559). 

Supplementary table 1: Total proteome of T. brucei silenced for MKK5. Table 

report the list of quantified proteins with their corresponding IDs, SILAC ratios, and 

FDR values. 

Supplementary table 2: Phosphoproteome of T. brucei silenced for MKK5. Table 

report the list of quantified phosphorylation sites with their corresponding IDs, SILAC 

ratios, and FDR values.  

 

Acknowledgements 

We are grateful to Dr. David Horn for kindly providing the p2T7TAblue plasmid, to 

Oswaldo Cruz Foundation (FIOCRUZ) and National Council of Technological and 

Scientific Development (CNPq) for funding. 

Conflict of interest 

The authors declare no conflict of interest.  

Page 21 of 32

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



22 

 

Figure 1: The silencing of MKK5 is detrimental for the growth of procyclic 

forms of T. brucei. (A) Experimental workflow used for RNAi construct design, 

cloning and transfection. Trypanosoma image adapted from medical servier art. (B) 

MKK5 silencing efficiency determined by RT-qPCR. The results are expressed as a 

percentage in comparison to control cells. mRNA levels were normalized to Actin, 

PFR and TERT. (C) Growth curve until stationary phase in dialyzed FBS. (D) Long-

term growth curve in dialyzed FBS. (D) Long-term growth curve in regular FBS.  
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Figure 2: SILAC-based MS proteomics and phosphoproteomics workflow. T. 

brucei were SILAC labelled and the knockdown of MKK5 was induced via addition of 

tetracycline into the cultures for four days. Then, the same number of induced and 

non-induced cells was mixed, cells were lysed and proteins digested into peptides. 

For the analysis of the total proteome, peptides were purified in stage-tips and then 

run in the mass spectrometer. For the analysis of the phosphoproteome, the 

phosphopetides were enriched using three sequential incubations with TiO2 and then 

run in the mass spectrometer QExactive HF. All experiments were performed in 

biological triplicates and the raw data was processed and analyzed using the 

MaxQuant computational platform. Trypanosoma image adapted from medical 

servier art. 

Page 23 of 32

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



24 

 

 

Figure 3: The unbiased 1D enrichment analysis reveals the abundance of 

proteins related to ribosome and translation is decreased upon MKK5 

silencing. The histograms show in grey the global distribution of the quantified 

proteins. Highlighted in blue are the proteins belonging to the respective GO 

categories. The threshold used was 0.01 Benjamini-Hochberg FDR and the p-values 

are indicated. 
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Figure 4: The silencing of MKK5 alters the total levels of proteins related to 

fatty acids biosynthesis and energy metabolism. (A) Scatter plot showing the 

quantified proteins, highlighted in red and blue are the proteins significantly regulated 

in at least two of three replicates determined by Significance B (0.05 Benjamini-

Hochberg FDR) and with low variability across replicates. (B) Enrichment analysis of 

the GO categories and KEGG pathways in the subset of significantly up-regulated 

and (C) down-regulated proteins determined by Fisher’s test (0.05 Benjamini-

Hochberg FDR).  
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Figure 5: Functional relationship among the regulated proteins and 

phosphorylation sites determined by STRING. Modified residues are listed above 

each regulated phosphorylation sites. 
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Uniprot 
ID 

    Gene ID        Protein name Log2 SILAC Ratio Average SD 

Rep 1 Rep 2 Rep 3 

Q57XQ8 Tb927.7.2160 Uncharacterized protein 1.864 1.831 1.628 1.775 0.128 

Q57VC7 Tb927.5.1360 Uncharacterized protein 0.619 1.018 0.163 0.600 0.428 

Q57TY7 Tb927.7.7500 
Iron/ascorbate oxidoreductase 
family protein, putative 

0.590 0.518 0.380 0.496 0.107 

Q586R6 Tb927.2.4700 Uncharacterized protein 0.571 - 0.364 0.467 0.146 

Q388Q5 Tb10.05.0150 Citrate synthase 0.386 0.392 0.420 0.399 0.018 

Q386P1 Tb11.02.0290 
Succinyl-CoA:3-ketoacid-
coenzyme A transferase 

0.360 0.315 0.379 0.351 0.033 

Q57WY9 Tb927.3.1080 Uncharacterized protein 0.362 0.291 0.375 0.343 0.045 

Q587H4 Tb927.2.2770 Uncharacterized protein 0.278 0.356 0.386 0.340 0.056 

Q38EV9 Tb09.160.4480 Putative uncharacterized protein 0.239 0.337 0.309 0.295 0.050 

Q38AK7 Tb10.6k15.3080 
Dihydrolipoamide 
acetyltransferase, putative 

0.263 0.303 0.246 0.271 0.030 

Q387G0 Tb11.03.0230 Isocitrate dehydrogenase [NADP] 0.271 0.252 0.265 0.263 0.010 

Q57Y77 Tb927.7.2670 Uncharacterized protein -0.288 -0.294 -0.373 -0.318 0.047 

Q584Q7 Tb927.6.2490 Uncharacterized protein -0.347 -0.358 -0.314 -0.340 0.023 

Q57XD7 Tb927.8.2520 Acetyl-coenzyme A synthetase -0.364 -0.353 -0.390 -0.369 0.019 

Q38BN3 Tb10.70.3710 Aspartate aminotransferase -0.376 -0.276 -0.471 -0.374 0.098 

Q57WH4 Tb927.7.3590 Uncharacterized protein -0.326 -0.485 -0.375 -0.395 0.082 

Q57XD5 Tb927.8.2540 3-ketoacyl-CoA thiolase, putative -0.406 -0.435 -0.396 -0.412 0.020 

Q57YA8 Tb927.7.2980 Uncharacterized protein -0.386 -0.468 -0.438 -0.431 0.042 

Q383S3 Tb11.01.1820 
Biotin--acetyl-CoA-carboxylase 
ligase 

-0.419 -0.439 -0.474 -0.444 0.028 

Q389R7 Tb10.406.0290 
Protein tyrosine phosphatase, 
putative 

-0.502 -0.466 -0.394 -0.454 0.055 

Q57UP8 Tb927.7.4180 Elongation of fatty acids protein -0.447 -0.488 -0.445 -0.460 0.024 

Q57X18 Tb927.8.5640 Uncharacterized protein -0.463 -0.539 -0.516 -0.506 0.039 

Q381P0 Tb11.01.7095 Putative uncharacterized protein -0.535 -0.558 -0.609 -0.567 0.038 

Q57YX5 Tb927.8.3380 Electron transfer protein, putative -0.570 -0.598 -0.610 -0.593 0.020 

Q587G0 Tb927.2.3080 Fatty acid desaturase, putative -0.486 -0.712 -0.582 -0.593 0.113 

Q57UP6 Tb927.7.4160 Elongation of fatty acids protein -0.594 - -0.620 -0.607 0.019 

Q38FB9 Tb09.160.2780 Fatty acyl CoA synthetase 2 -0.609 -0.622 -0.673 -0.634 0.034 

Q57VY1 Tb927.5.320 
Receptor-type adenylate cyclase 
GRESAG 4 

-0.847 -0.487 -0.586 -0.640 0.186 

Q38EW9 Tb09.160.4380 
Succinate dehydrogenase, 
putative 

-0.641 -0.737 -0.630 -0.670 0.059 

Q57ZJ0 Tb927.7.4990 Uncharacterized protein -0.944 0.088 -1.207 -0.688 0.685 

Q386T6 Tb11.18.0006 
Carnitine O-acetyltransferase, 
putative 

-0.699 -0.663 -0.702 -0.688 0.022 

Q580N2 Tb927.3.4100 Uncharacterized protein -0.854 -0.799 -0.648 -0.767 0.107 

Q38A66 Tb10.6k15.1350 Pteridine transporter, putative -0.719 -0.911 -0.753 -0.795 0.102 

Q38AL3 Tb10.6k15.3150 
Chromatin binding protein, 
putative 

- -1.024 -0.636 -0.830 0.274 

D6XIG3 Tb927.6.4340 
U6 snRNA-associated Sm-like 
protein 

-0.426 -1.714 -1.347 -1.162 0.664 

Q385F9 Tb11.02.3920 
TatD related deoxyribonuclease, 
putative 

- -1.345 -1.051 -1.198 0.208 

Q57VW9 Tb927.5.440 Trans sialidase, putative -1.152 -1.285 -1.167 -1.201 0.073 

Q57YK1 Tb927.8.6000 Fatty acid desaturase, putative -1.400 -1.648 -1.429 -1.493 0.136 

Table 1: Significantly regulated proteins upon MKK5 silencing in the total proteome. 
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Uniprot 
ID 

Gene ID Protein name Site Log2 SILAC Ratio Average SD 

Rep 1       Rep 2     Rep 3 

Q388X3 Tb10.389.0890 
Pyruvate dehydrogenase E1 
component alpha subunit, putative 

S 284 1.347 1.467 1.351 1.388 0.068 

Q387B6 Tb11.47.0013 Putative uncharacterized protein S 482 1.090 1.190 1.272 1.184 0.091 

Q584N4 Tb927.2.240 
Retrotransposon hot spot (RHS) 
protein, putative 

S 275 1.185 1.044 - 1.114 0.100 

Q4GYY6 TB927.1.2330 Beta tubulin S 95 0.631 1.449 - 1.040 0.579 

Q384X8 Tb11.02.4760 Putative uncharacterized protein S 340 0.751 1.325 - 1.038 0.406 

Q385G4 Tb11.02.3860 Putative uncharacterized protein S 410 1.068 0.906 0.957 0.977 0.083 

Q38C61 Tb10.70.6035 Putative uncharacterized protein S 12 1.310 1.128 0.467 0.968 0.443 

Q385Z7 Tb11.02.1680 Lectin, putative S 454 0.882 0.925 1.002 0.936 0.061 

Q57UL0 Tb927.8.5380 Ubiquitin-fold modifier 1 S 2 0.841 0.887 0.801 0.843 0.043 

Q386Y0 Tb11.55.0006 
Intraflagellar transport protein IFT88, 
putative 

T 757 0.962 0.744 0.810 0.839 0.112 

Q38F06 Tb09.160.3990 Cation transporter, putative S 2 0.473 0.897 1.037 0.802 0.294 

Q385B5 Tb11.02.4390 Putative uncharacterized protein S 434 0.777 0.782 - 0.780 0.003 

Q38F06 Tb09.160.3990 Cation transporter, putative S 4 0.993 - 0.466 0.730 0.373 

Q389D9 Tb10.389.1760 Putative uncharacterized protein S 162 - 0.840 0.596 0.718 0.173 

Q57XV0 Tb927.3.1170 Uncharacterized protein S 248 0.536 0.984 0.613 0.711 0.240 

Q388X2 Tb10.389.0880 Heat shock protein, putative S 137 0.508 0.702 0.666 0.625 0.103 

Q385P1 Tb11.02.2940 
Ubiquitin carboxyl-terminal hydrolase, 
putative 

S 9 0.805 0.498 0.462 0.588 0.188 

Q583R5 Tb927.6.2690 
Ubiquitin carboxyl-terminal hydrolase, 
putative 

S 184 - 0.656 0.465 0.560 0.135 

Q57ZH2 Tb927.7.5170 60S ribosomal protein L23a S 151 0.697 0.586 0.293 0.526 0.209 

Q57WH1 Tb927.7.3560 Uncharacterized protein S 960 0.559 0.471 0.488 0.506 0.047 

Q57YN8 Tb927.8.6370 Uncharacterized protein S 311 - 0.528 0.479 0.503 0.035 

Q57YN8 Tb927.8.6370 Uncharacterized protein S 314 - 0.528 0.479 0.503 0.035 

Q38EP6 Tb09.160.5060 Putative uncharacterized protein T 4 0.146 0.665 0.616 0.476 0.287 

Q389U9 Tb10.406.0650 
Microtubule-associated protein, 
putative 

S 2053 0.042 0.648 0.513 0.401 0.318 

Q586S2 Tb927.2.4780 Uncharacterized protein S 350 0.139 -0.611 -0.656 -0.376 0.447 

Q57WH0 Tb927.7.3550 Uncharacterized protein S 753 -0.176 -0.582 -0.595 -0.451 0.238 

Q57ZR3 Tb927.5.1940 Uncharacterized protein S 146 -0.697 -0.549 -1.130 -0.792 0.302 

Q57ZR3 Tb927.5.1940 Uncharacterized protein T 152 -0.697 -0.549 -1.130 -0.792 0.302 

Q57ZR3 Tb927.5.1940 Uncharacterized protein S 146 -0.756 -0.617 -1.057 -0.810 0.225 

Q386F1 Tb11.02.1100 Nucleobase/nucleoside transporter 8.1 S 240 - -1.552 -1.225 -1.388 0.231 

Q38CW6 Tb09.244.2560 Kinesin-like protein S 469 -2.078 - -1.127 -1.603 0.672 

Q4FKA6 Tb11.1400 
Translation initiation factor eIF2B delta 
subunit, putative 

S 207 -2.470 -2.403 -1.361 -2.078 0.622 

Table 2: Significantly regulated phosphorylation sites in procyclic forms of T. brucei 

silenced for MKK5. 
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