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Abstract

The Psychiatric Genomics Consortium (PGC) is the largest consortium in the history of 

psychiatry. In the past decade, this global effort has delivered an increasing flow of new 

knowledge about the fundamental basis of common psychiatric disorders, particularly given its 

dedication to rapid progress and open science. The PGC has recently commenced a program of 

research designed to deliver “actionable” findings – genomic results that (a) reveal the 

fundamental biology, (b) inform clinical practice, and (c) deliver new therapeutic targets. This is 

the central idea of the PGC: to convert the family history risk factor into biologically, clinically, 

and therapeutically meaningful insights. The emerging findings suggest that we are entering into a 

phase of accelerated genetic discovery for multiple psychiatric disorders. These findings are likely 

to elucidate the genetic portions of these truly complex traits, and this knowledge can then be 

mined for its relevance for improved therapeutics and its impact on psychiatric practice within a 

precision medicine framework.
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Introduction

Heredity is intimately related to the history of psychiatry. Clinical observations by early 

physicians noted the tendency of mental illnesses to run in families. In the 20th century, 

these anecdotes were systematically evaluated and some were confirmed in rigorous twin, 

family, and adoption genetic epidemiological studies. This exceptional body of evidence 

provided a major etiological clue for the field: common psychiatric disorders have a 

moderate to strong tendency to run in families largely due to genetic inheritance (1, 2).

For instance, in 1946 Franz Kallmann published an influential twin study of schizophrenia 

in this Journal (3). Kallmann was a psychiatrist and the fourth president of the American 
Society for Human Genetics. Kallmann’s study of 691 twin pairs was the largest in the field 

for nearly four decades. Reanalysis of these data (4) yielded an estimate of the heritability of 

schizophrenia (91%) that was higher than more recent national-scale studies (60–65%) (5, 
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6). Although Kallmann’s speculation that schizophrenia was due to an autosomal recessive 

mutation has been disproven, the concluding line of his paper remains exceptionally 

important, that a genetic theory of schizophrenia is “equally compatible with the psychiatric 

concept that schizophrenia can be prevented as well as cured.”

We now know that these genetic effects are relatively small and non-deterministic: most 

people with a strong family history are not themselves affected (as is also observed for most 

complex biomedical diseases). Moreover, most psychiatric disorders do not “breed true”. For 

example, the immediate relatives of people with schizophrenia have increased risks for 

schizophrenia but also for multiple other conditions (e.g., bipolar disorder, major depressive 

disorder (MDD), and autism). The diverse clinical manifestations and variable course 

observed for many common psychiatric disorders are consistent with complex and relatively 

small genetic effects. For adult-onset common psychiatric disorders in particular, 

development is often within normal limits, although there is often some impairment of 

higher components of cognition.

In the last decade, it has become technically and economically feasible to interrogate the 

genome directly with increasing resolution and completeness. Instead of indirectly studying 

the heredity of psychiatric disorders (e.g., via studies of pedigrees, twins, or adoptees), we 

can now evaluate the genomes of cases and controls at several levels of precision quickly 

and inexpensively. Indeed, heritability itself can be assessed directly from genome-wide 

genetic data (7, 8).

By carefully evaluating the successes and failures of psychiatric genetics in the past three 

decades, we now have a solid fix on how to dissect the “family history risk factor” into far 

more precise and mechanistic components. We can identify genetic variants that contribute 

to risk, and are moving toward understanding the mechanisms by which they act. The field 

has learned an enormous amount, and is poised to make fundamental advances that could 

profoundly improve understanding.

This review provides an update on what we have learned, and puts forth an agenda for the 

next five years. A key lesson was the need for a global community effort in psychiatric 

genetics because the required samples sizes are far beyond the reach of any single group. To 

enable these studies, in 2007 we formed the PGC (https://pgc.unc.edu). Our overarching 

goal is to deliver actionable knowledge, i.e., genetic findings whose biological implications 

can be used to improve diagnosis, develop rational therapeutics, and craft mechanistic 

approaches to primary prevention.

Getting up to speed in genetics

In 2009, the PGC published three foundational papers regarding genome-wide association 

studies (GWAS) (9–11). GWAS is a genomic study design that focuses on the impact of 

common genetic variation in almost all genes in the human genome. The initial PGC papers 

covered the core concepts, history, the rationale, genomic assays, statistical analysis, 

interpretative framework, and the importance of cross-disorder studies in psychiatry. Full 

background of the terminology, core concepts, and strategy of GWAS can be found in these 
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papers. Basic terms are defined in Table S1, and a paper that serves as a “primer” can be 

found here. (12)

Clarity in retrospect

A key unknown was genetic architecture, particularly the sizes of the underlying genetic 

effects. A decade ago, these were unknown and subject to considerable speculation with 

hypotheses suggesting that genetic discovery for psychiatric disorders would be anywhere 

from highly tractable to impossible. If the genetic effects were few, common, and had large 

genetic effects, relatively modest sample sizes would be sufficient. A few early studies 

hinted that small samples might suffice (e.g., APOE on Alzheimer’s disease or CFH on age-

related macular degeneration) (13, 14), and these may have led to expectations that gene 

discovery would be straight-forward.

The power calculations are not difficult: for a given number of cases and controls (plus 

assumptions of allele frequency, genetic model, significance threshold, and power), it is easy 

to compute the minimum detectable genotypic relative risk (GRR). For example, Figure 1a 

shows the 90% power curve for a GWAS of 1,000 cases and 1,000 controls.

Like most investigators in human complex disease genomics, we had limited data to allow us 

to narrow bounds on the search space. We quickly learned that optimistic assumptions of 

large genetic effect sizes for these disorders were incorrect. The initial GWAS for 

psychiatric disorders had sample sizes ~1,000 cases enabling excellent power to detect GRR 

≥2.5. However, these effects were not found for schizophrenia (15), bipolar disorder (16), 

MDD (17), or attention-deficit hyperactivity disorder (ADHD) (18). Figure 1a also shows 

the 90% power curve for the most successful GWAS of any psychiatric disorder (37,000 

schizophrenia cases) (19), and only two of 128 independent loci had GRR ≥1.2. 

Compellingly, we can now demonstrate that common genetic variants with GRR above 

~1.24 for schizophrenia can be excluded with ~100% power.

Genetic effects that are common and large are unusual for human diseases and traits studied 

using GWAS (Figure 1b). They are occasionally found for less complex conditions that can 

be assessed with exceptional precision (e.g., infectious diseases, rare adverse drug reactions, 

and eye diseases). To our knowledge, the largest common genetic variant associations 

observed to date in psychiatry are for alcoholism in people of East Asian ancestry (GRR 

~6.2) and clozapine-induced agranulocytosis (GRR ~5.3) (20, 21).

Genetic architecture and models of disease

Elucidation of the genetic architecture underlying these disorders is the major goal of the 

PGC. How many susceptibility or protective variants are there? What are their frequencies 

and effect sizes? How do they exert their effects? Do these variants interact with one another 

or with environmental risk factors? Crucially for biological understanding, which genes are 

affected by these variants?

It is heuristically useful to consider the bookends. The extreme models are that psychiatric 

disorders are caused by (a) the cumulative impact of hundreds or thousands of common 
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genetic variants each of small effect (common-disease/common-variant model) or (b) many 

different gene-disrupting variants of strong effect (multiple rare variant model). In the latter 

model, every person with a serious psychiatric disorder would have a strong effect variant 

and these would cluster in a set of genes important to brain development and function.

These models were passionately debated. Some authors expressed profound hope that the 

multiple rare variant model was broadly explanatory (22–24). Others favored a common 

disease/common variant model, arguing that psychiatric phenotypes are comparatively 

subtle. Most investigators were agnostic. The PGC wished to design studies that would be 

informative whatever the underlying model (9).

The initial strategy of the PGC

A consistent lesson from the history of psychiatric genomics was that these are very hard 

problems: any search is going to be far more difficult than anticipated. Although we were 

hopeful that the initial GWAS might deliver insights, we created the PGC in order to hedge 

our bets: we needed a framework to aggregate data across studies with exceptional care and 

rigor if we were to progress. A critical step was to convince all groups that sharing 

individual data was essential – this is a foundational principle of the PGC and allows optimal 

quality control and analysis.

Moreover, to ensure progress, an “open-science” perspective was required. Genome-wide 

summary statistics of all PGC analyses are available for widespread use (https://

pgc.unc.edu), and the vast majority of PGC genotype data that can be deposited are available 

to qualified researchers in a controlled-access repository. We recently have made available a 

list of the top loci from PGC analyses (both published and in preparation).

These early strategic decisions proved important: results from the first wave of psychiatric 

GWAS, circa 2008, were unimpressive. Although we were careful not to hype GWAS (9, 

10), some prominent commentators voiced strong doubts about its value – even though 

careful review of the early results showed unequivocal indications of genetic effects. The 

first wave studies were simply underpowered, and combining studies to increase power was 

logical. Nevertheless, we persisted, and a 2012 letter signed by 96 psychiatric genetics 

investigators (“Don’t give up on GWAS”) anticipated the utility of GWAS should sample 

sizes increase (25).

To date, the PGC has published 24 main papers and 51 secondary analysis papers (Table 
S2). At least 141 additional papers have made use of PGC results. Many PGC papers are 

highly cited, but chief among them is the schizophrenia Nature (19) report which ranks 

among the most highly cited papers in 2014. The PGC is among the leading genomic 

consortia worldwide for open science and data sharing. These successes are a testimony to 

the fact-based strategy and persistence of the PGC.

An update

What have we learned? We now have a sizable body of empirical results relevant to the 

common “versus” rare variant debate. All common psychiatric disorders with sufficiently 
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large samples have a predominant common-disease/common variant contribution (26–28). 

Indeed, this is widely seen across human complex diseases like type 2 diabetes mellitus (29), 

and anthropometric traits like height (30) and body mass (31). Demonstrating a major role of 

common genetic variation on risk for human complex traits (including psychiatric disorders) 

is so widely and consistently documented that it is no longer particularly newsworthy.

There is a variable contribution of rare variation of strong effect. This tends to be larger for 

early onset, severe disorders and lesser for disorders with normal-range developmental 

trajectories and adult onset (Figure 2a). However, even for psychiatric disorders with many 

proven examples of rare variants of strong effect (e.g., intellectual disability or early-onset 

Alzheimer’s disease), there is always a contribution of common variation. Rare variant 

studies have proven more difficult than anticipated: to confidently identify rare variants of 

strong effect in typical clinical samples requires very large sample sizes, perhaps as many as 

~100K cases (32). The protein-coding parts of the genome are replete with inconsequential 

variation, and current ways to predict functional consequences are imprecise (33). There is a 

lot of noise, and the signal is sparser and weaker than anticipated.

Table 1b shows current sample sizes and notable findings for the nine PGC working groups. 

Schizophrenia has accumulated the most data for both common and rare variation. Figure 2b 

shows significant results from GWAS, copy number variation (CNV), and exome sequencing 

studies (19, 34, 35). Most findings are for common variation. Multiple rare CNVs have been 

implicated; most are multi-genic and all increase risk for several psychiatric disorders and 

neurological diseases (34). SETD1A is the only gene implicated to date by whole exome 

sequencing studies (35), but other such studies have only found hints of biological pathways 

by focusing on extremely rare variation (36, 37). It was widely anticipated that exon 

variation in the 0.005 to 0.01 allele frequency range would be readily found but this has not 

been observed (38), and a recent study of height required over 700,000 subjects to identify 

loci in this range (39). In a direct comparison, common variation had 14–28 times more 

impact on risk for schizophrenia than rare CNVs or rare exonic variation (40).

Another major finding has been the repeated empirical documentation of important genetic 

overlap (particularly common variation) between most or all adult- and childhood-onset 

psychiatric disorders (26, 27). It is clear that psychiatric nosology has not “carved nature at 

the joints”. Moreover, the common variant genetic architecture of many disorders blends 

into normal phenomena. For example, there are sizable genetic correlations of MDD with 

personality traits like neuroticism and readily-assessed depressive symptom measures. Other 

findings suggest reconceptualizations may be needed. For example, anorexia nervosa had a 

significant positive genetic correlation with schizophrenia, significant negative genetic 

correlations with body mass index and unfavorable metabolic measures, and significant 

positive genetic correlations with favorable metabolic factors. This pattern of findings 

suggests that the roots of anorexia nervosa may be not only psychiatric, but also metabolic in 

origin.

The PGC MDD group recently completed a manuscript that identified 44 genetic loci for 

MDD (41). This work is notable due to the compressed timescale (two months from final 

results to submission) as well as demonstrating what the findings can tell us. The individual 
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loci yielded multiple strong candidate genes (e.g., NEGR1, RBFOX1, and SOX5). The 

findings were associated with clinical features of MDD (e.g., earlier age of onset and 

recurrent and more severe forms of MDD). Gene expression patterns in prefrontal and 

anterior cingulate cortex most closely matched the genetic findings (these brain regions also 

show MRI differences between MDD cases and controls). Genes that are targets of 

antidepressant medications were strongly enriched for MDD association signals 

(P=8.5×10−10), suggesting pharmacotherapeutic relevance. The genetic basis of lower 

educational attainment and higher body mass were putatively causal for MDD whereas 

MDD and schizophrenia reflected a partly shared biological etiology.

This is an evolving area with regular increases in confident knowledge. To encourage rapid 

dissemination of results, the PGC regularly compiles and shares a list of the strongest 

findings for the disorders it studies.

PGC, an agenda

Attempts to understand the genetic basis of psychiatric disorders – to untangle and 

concretize the family history risk factor – have never been easy. However, by incorporating 

empirical results, a data-driven and logical way forward has emerged, and it is likely that 

these efforts will continue to yield important new knowledge. Many groups are active in this 

area, but the PGC has emerged as the key umbrella organization for a large portion of this 

work. A basic description of the PGC and its core principles is given in Table 1a. Key 

technical aspects include its dedication to rigorous methodologies and its stance as a “mega-

analysis” consortium with PGC members sharing individual-level genotype and phenotype 

data.

With continued support from the NIMH (and new support from NIDA), the PGC recently 

initiated a program of research designed to deliver “actionable” findings, genomic results 

that (a) reveal the fundamental biology, (b) inform clinical practice, and (c) deliver new 

therapeutic targets. This is the central idea of the PGC: to convert the family history risk 

factor into biologically, clinically, and therapeutically meaningful insights. This program of 

research has six aims, three focused on common variation and three on rare variation (Table 

1c).

Aim 1 (common variation) is the core business of the PGC: to conduct progressively larger 

GWAS mega-analyses and systematic cross-disorder analyses (42). Figure 3a depicts the 

progression of sample sizes with time. Our goal is for each of the nine disorder working 

groups to obtain GWAS data on 100,000 cases. More information on case definitions can be 

found in Table S3.

Figure 3b encapsulates experience with sample size and numbers of significant associations. 

Some disorders have a fortuitous architecture; e.g., inflammatory bowel disease obtained a 

considerable number of findings with relatively small samples. For most other complex 

traits, the path is slower but, with sufficient samples, discovery becomes linear. Figure 3c 

shows an idealized cartoon of the sigmoid-like discovery process from “dead zone” to 

asymptote. We suggest that the goal is to get to a “good enough” point where most genes are 
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identified at least once and the majority of genes in salient biological processes are 

highlighted. This can provide an etiologic scaffold for studies that use other methods to 

identify interacting partners in gene networks and pathways that underlie pathogenesis. 

There may be on the order of 1,000 genes involved in schizophrenia (43) (for comparison, 

~13,000 genes are expressed in brain and ~2,000 at the synapse). Most of the nine PGC 

disorder working groups have identified at least one genome-wide significant association, 

several are accumulating moderate numbers of loci, and schizophrenia and MDD appear to 

be in the linear phase (Table 1b).

The PGC has extended its initial efforts in three ways. First, we added four new and highly 

motivated groups (eating disorders, obsessive-compulsive disorder/Tourette syndrome, post-

traumatic stress disorder, and substance use disorders). Provisional groups for anxiety 

disorders and Alzheimer’s disease have been formed. Second, we hope to markedly increase 

inclusion of non-European samples (Figure S1). For example, the PGC is now completing a 

paper based on over 12,000 schizophrenia cases from East Asia. The post-traumatic stress 

disorder and substance use disorders groups are studying increasingly larger samples of 

African-Americans. The Stanley Center of the Broad Institute has launched major sample 

collection efforts for multiple severe psychiatric disorders in Africa, South America, and 

Asia.

This work is crucial for generalizability. Although it likely that most (but not all) 

associations will be observed across the world, there will also be population differences, and 

it is clear that the application of genetic risk scores globally (see below; aim 2) will require 

risk allele weights derived from the major ancestral populations. Finally, the PGC has 

engaged academic and industry experts to understand the therapeutic salience of the findings 

(44). Indeed, the empirical targets of antipsychotic medications are markedly enriched for 

the results of schizophrenia GWAS and this enrichment became clearer with increasing 

sample sizes, as has the potential pharmacological relevance of calcium channels for 

psychiatry (45). The design of rational therapeutics has been an elusive goal for psychiatric 

indications, and improved genomic knowledge is a pre-competitive activity that can make 

novel drug discovery more efficient (46).

Aim 2 (common variation) concerns the analysis of genetic risk scores (GRS). For a 

complex disease or trait, GRS is a single, normally distributed variable that captures the 

cumulative effect of risk alleles inherited by an individual (e.g., for schizophrenia, bipolar 

disorder, or body mass index). Computing a GRS requires a training set (i.e., GWAS results) 

and genome-wide genotypes on independent test subjects (e.g., a population cohort or 

participants in a clinical trial). The PGC has made training sets publicly available for 

multiple disorders. This allows researchers to compute GRS for whatever use they deem 

appropriate. GRS are not yet sufficiently discriminating to be useful clinically (19) but are 

among the first demonstrably valid biomarkers for psychiatric disorders. GRS derived from 

PGC results have been widely used in psychiatric research for generating patient strata, 

exploring diagnostic boundaries, identifying cognitive and behavioral correlates of genetic 

risk that predate clinical disorders, and evaluating the validity of putative cognitive or 

imaging phenotypes (47). Many social scientists have embraced the approach, seeing 
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opportunities to study how genetic factors interact with the social environment (e.g., socio-

economic status) to influence health and broader outcomes (48).

The PGC will systematically evaluate GRS in three contexts: (a) development: use data from 

large longitudinal cohorts to evaluate the developmental effects of GRS; (b) clinical: analyze 

relationship between clinical descriptors/symptoms (e.g., early vs late onset, severer vs 

milder, or unremitting vs episodic illness) and GRS to understand clinical relevance; and (c) 

analyze GRS by environment interactions in epidemiological samples.

Aim 3 (common variation) will use GWAS results to estimate pairwise genetic correlations 

among all PGC disorders with all obtainable CNS-relevant diseases and quantitative traits 

(e.g., epilepsy, neuroimaging, personality, and cognition). We will develop a comprehensive 

portrait of genetic influences across a broad set of brain phenotypes with the intention of 

improving nosology.

Past epidemiological studies have documented the extensive comorbidities of psychiatric 

disorders at the phenotype level. Due to limitations inherent to observational studies, 

understanding whether a phenotypic correlation is potentially causal or if it results from 

reverse causation or confounding is generally difficult or impossible. Genetic studies now 

offer complementary strategies. We can readily assess whether a phenotypic association 

between psychiatric disorders or between a psychiatric disorder and a risk factor is mirrored 

by a common variant genetic correlation. This can be done using GWAS summary statistics. 

If the genetic studies are sufficiently large, it is also possible to apply Mendelian 

randomization to evaluate the potential causality of the association (49).

For example, a recent PGC paper found sizable positive genetic correlations between MDD 

and multiple measures of body mass (41). We investigated the association using bi-

directional Mendelian randomization, and found evidence suggesting a potential genetic 

causal relation of body mass on risk for MDD but not the reverse. These results provide 

hypotheses for more detailed prospective studies, and the underlying mechanisms are likely 

to be more complex.

We will operationalize similar analyses for other disorders (e.g., autism with/without 

intellectual disability, bipolar disorder with/without psychosis or with/without lithium 

response). Given sex differences in disease prevalence for many disorders, analyses of 

genetic correlations by sex will be conducted as well. In addition, many of these disorders 

have significant genetic correlations with cognition, personality, and body mass. Are these 

genetic correlations putatively causal or due to some other process (confounding or bias)? 

Differences between disorders will be investigated—for example, body mass has a positive 

genetic correlation with MDD but a negative genetic correlation with anorexia nervosa (50).

Aim 4 (rare variation) will continue the PGC’s CNV efforts (34). The PGC CNV group has 

created a pipeline to call CNVs from the initial intensity files using multiple algorithms 

followed by careful quality control and analysis. The initial schizophrenia paper has been 

published, and this group is now working on bipolar disorder, ADHD, and post-traumatic 

stress disorder (PTSD), and will include more groups with time.
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Aim 5 (rare variation) is a “cheap-seq” aim. We will conduct inexpensive (~$50/subject) 

schizophrenia-focused sequencing of 200 genes in 20,000 subjects. Genes will be selected 

based on all available sequencing results. For 200 genes, we will increase power far more 

cost-effectively than whole exome (10× cheaper) or whole genome sequencing (25× 

cheaper) in the same time frame. We propose an efficient and affordable way to markedly 

increase sample sizes for the most promising loci in a new sample of 20,000 subjects.

Aim 6 (rare variation) will systematically evaluate ~100 large pedigrees to search for genetic 

variants of large effect. We have engaged the large network of PGC clinicians in this task. 

Most experienced clinicians have encountered unusual pedigrees with high concentrations of 

severe psychiatric disorders. For example, one pedigree has >100 individuals with a severe 

psychiatric disorder and eight pedigrees have ≥20 affected individuals. Other pedigrees are 

from genetic isolates where interpedigree marriage is common. Still other pedigrees have 

extensive comorbidity with intellectual disability and epilepsy. No one has systematically 

and comprehensively evaluated a large collection of densely affected pedigrees using 

comprehensive genomic assays (karyotyping, identity-by-descent, CNVs, whole genome 

sequencing, and GRS) combined with a rigorous statistical framework. However, a pedigree 

very dense with psychiatric disorders can occur because a rare variant of strong effect is 

segregating in that pedigree or because that pedigree has an unusually high number of 

common variants of small effect (see reference (51) for an example).

Actionability. For the common variant aims, Aim 1 is of biological, clinical, and therapeutic 

relevance. Aim 2 and Aim 3 are important clinically and for nosology. Of the rare variant 

aims, all are important biologically and therapeutically (given their potential to identify 

single genes whose mutational disruption carries high risk).

Issues in the process of being solved

Empirical results from psychiatric genomics have begun to answer many fundamental 

questions. We point to two major unresolved issues. First, a crucial issue is pinpointing the 

biological implications of GWAS results. What precise mechanistic hypotheses arise from 

the findings? If a GWAS “associates” a psychiatric disorder to a specific genomic region, 

what genes should neuroscientists and molecular biologists study in order to delve more 

deeply into the basis of a disorder? This is crucial for downstream experimentation as 

studying one gene in detail can easily consume several personyears and hundreds of 

thousands of dollars.

Making connections from DNA sequence variation to a cellular mechanism is sometimes 

straightforward. This is one reason researchers like to exploit rare exon variants (Aims 5–6) 

as the connection to a gene is usually direct and can be logically evaluated with some 

confidence. Occasionally, common variant findings can be directly implicated; for example, 

the PGC MDD study found two separate associations on opposite sides of the same gene 

(RBFOX1) (41).

However, such findings are unusual for many common psychiatric disorders (Figure 2), and 

connecting the numerous common variant association signals to genes can be challenging. 
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Figure 4 illustrates typical patterns of results. Figure 4a shows the CACNA1C intronic 

association for schizophrenia; a subsequent study suggested that these variants interact with 

a regulatory element for CACNA1C (52). Figure 4b depicts the region surrounding DRD2 
(encoding a key target of antipsychotics). This association has been functionally connected 

to DRD2 via DNA-DNA regulatory loops (53). Figure 4c shows a multigenic region—the 

association region covers many brain-expressed genes associated with multiple human traits. 

Figure 4d depicts a region associated with schizophrenia but far from any known protein-

coding gene.

These are typical for GWAS results. Although localization is imprecise, the associated 

genomic regions are clearly informative as they implicate salient biological pathways (54), 

specific genomic features (55), and targets of common psychiatric medications (41, 45). 

Connecting most or all of the findings to specific genes requires additional data based on the 

function of the human brain; e.g., brain gene expression in brain regions (56), DNA-DNA 

looping (53), and epigenomics (57). The NIMH has funded the psychENCODE consortium 

(57) to conduct an array of functional genomic assays on brain samples from people with 

severe psychiatric disorders to enable this work. We anticipate considerable progress in this 

area in the near future.

Second, as discussed above, the genetic basis of most psychiatric disorders show 

fundamental connections. For example, the common variant genetic basis of MDD overlaps 

significantly with that of anxiety disorders, autism, ADHD, schizophrenia, bipolar disorder, 

smoking behavior, and anorexia nervosa (41). Moreover, the presence or absence of some 

clinical disorders (MDD, autism, and ADHD) shows strong genetic overlap with the 

analogous symptoms in general population samples. Further, the common genetic basis of 

many psychiatric disorders is often strongly correlated with that of putative subphenotyes 

(also known as endophenotypes or component phenotypes). For example, the common 

variant genetic basis of MDD is correlated with that for worse sleep, higher neuroticism, 

greater body mass in people without MDD (41). These results strongly suggest that our 

diagnostic categories do not define pathophysiological entities. The resolution of these 

issues will address major unanswered questions: from a genetic perspective, what are these 

disorders? How are they similar and how are they different?

Common complaints

Briefly, there are three common complaints about the work of the PGC. First, “the results 

don’t matter” – the readouts are broad and the effect sizes of individual associated loci are 

small. In fact, as discussed above, the results are delivering increasingly useful and targeted 

knowledge (discussed under Aim 1 above) (44, 45, 54). The small effect sizes do not 

constrain the potential utility of targeting the identified genes or pathways – drugs targeting 

those pathways can have major effects. Small effects can identify “druggable” targets: the 

canonical example of this is that GWAS has identified common genetic variation of small 

effect for multiple cholesterol measures in a gene (HMGCR) whose protein is the target of a 

class of cholesterol-lowering medication (46). Unlike 10 years ago, pharmaceutical 

companies are following this area closely as genomic data are increasingly crucial to drug 

development (46).

Sullivan et al. Page 11

Am J Psychiatry. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, “what about unaccounted heritability (h2)?” Heritability estimated from genome-

wide single nucleotide polymorphism data (SNP-h2) depends on technical issues and 

especially sample size. The comparator is estimated from imprecise twin or family data 

(twin-h2 or pedigree-h2). “Unaccounted h2” refers to the difference between these estimates, 

and attempts to reconcile fundamentally different entities. Still, when the genomic study is 

sufficiently large (as with schizophrenia), SNP-h2 is around half of the pedigree-h2. A point 

often missed, however, is that explaining h2 is a minor goal. The main goals of the PGC are 

to gain biological, clinical, and therapeutic insights, which can arise regardless of the 

magnitude of heritability accounted for.

Third, because most PGC analyses are based on categorical, case vs control analyses, “PGC 

cases lack clinical depth”. This was by intention: over 10 years ago (43), some of us 

reasoned that fast phenotype characterization that led to affordably large sample sizes was 

the logical first step (as opposed to large numbers of phenotypes on small numbers of 

subjects). This was always the first step. The success of this strategy is seen, not only in the 

genome-wide significant loci that we have discovered, but also in the many phenotypes that 

have been associated with PGC GRS in both clinical and population samples. The second 

step, ongoing now, is detailed characterization of genetically informative subsets of cases 

(e.g., Aim 2). In addition, some PGC working groups (e.g., substance use disorders) are 

currently analyzing quantitative phenotypes.

Conclusion

The PGC is the largest and most systematic genomics effort in the history of psychiatry. In 

the next five years, we propose to markedly up-scale our work. By tackling nature as it is 

and not as we might want it to be, we hope to provide considerable new knowledge about the 

fundamental basis of psychiatric disorders. Our long-standing commitment to global 

collaboration, open science, and rapid progress means that we will make our results and 

tools available in a timely manner. Prediction of the future is always hazardous but, given 

that we finally have a minimally adequate toolkit for genomics, it is possible that we are 

entering a golden age of research into the fundamental basis of severe mental illness.
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Figure 1. Theoretical power of GWAS and observed genetic effect sizes
a. Statistical power of GWAS (in theory). Upper curve ( ) shows minimum detectable 

genotypic relative risks for common variants for 1,000 cases and 1,000 controls (90% power, 

additive model, lifetime risk 0.01, α=5e-8). Lower curve ( ) shows 90% power for the 

PGC 2014 schizophrenia paper (37,000 cases and 113,000 controls, additive model, lifetime 

morbid risk 0.01, α=5×10− 8). Black dots show the top 10 loci in the PGC schizophrenia 

report. These loci are highly significant with P-values ranging from 1.7×10−13 to 3.8×10−32.

b. Odds ratios (OR, log10 scale) and allele frequencies from published GWAS. From EBI-

NHGRI GWAS catalog (accessed 1/27/2017), contains 2,308 GWAS papers published 
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3/2005–7/2016. There are 9,485 SNP-trait associations (P ≤ 1×1−8) including 7,487 SNPS 

and 870 traits. Dots show frequency and OR (transformed to be >1 and allele frequencies to 

0–0.50). Contours show densest areas of the plot. Horizontal lines show 50th (OR=1.22) and 

90th (OR=1.95) percentiles for ORs: most associations are subtle. Of 62 associations with 

OR>5, most are for infectious disease (N=31; e.g., influenza susceptibility), 

pharmacogenomic (N=13; e.g., rare adverse drug reactions like flucloxacillin-induced liver 

injury), eye disease (N=4; e.g., glaucoma), or pigmentation (N=2; e.g., blue vs. brown eyes). 

Only a few diseases have atypically large ORs (e.g., celiac disease, melanoma, membranous 

nephropathy, myasthenia gravis, ovarian cancer, Parkinson's disease, progressive 

supranuclear palsy, thyrotoxic hypokalemic periodic paralysis, and type 1 diabetes). The 

only psychiatric finding was alcohol consumption and ALDH2 in individuals of East Asian 

ancestry.

Sullivan et al. Page 23

Am J Psychiatry. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The types of genetic variants empirically associate with severe psychiatric disorders
a. Genetic causes of severe intellectual disability (ID) (58), autism spectrum disorder (ASD) 

(59, 60), and schizophrenia (SCZ) (61), including copy number variation (CNV), inherited 

known recessives, and single nucleotide variants (SNV). For severe ID, most SNV and CNV 

are de novo. The unknown grouping includes common variation, undiscovered rare genetic 

causes, phenocopies, and causation due to non-genetic effects.

b. Significant genetic associations for schizophrenia. Y-axis is log10 of odds ratio. X-axis is 

log10 of allele frequency in controls. Odds ratios transformed to be >1 and frequencies to be 

≤ 0.5. The dots on the lower right ( ) shows common-variant associations for 

schizophrenia (P<1e-8) (19). Open diamonds ( ) show copy number variation associated 

with schizophrenia (34). Filled square ( ) shows the lone variant identified using whole 

exome sequencing (35).
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Figure 3. GWAS sample sizes and rates of discovery
a. Numbers of cases for PGC GWAS analyses. For the original five PGC disorders 

(ADHD..SCZ), there are three bars for the numbers of cases in the initial “PGC1” reports, 

the next round of papers (“PGC2”), and the projected numbers by 2019. For the four 

disorders added in 2013 (ED..SUD), the PGC2 and projected PGC3 numbers are shown. 

Abbreviations: ADHD=attention-deficit hyperactivity disorder, AUT=autism, BIP=bipolar 

disorder, MDD=major depressive disorder, SCZ=schizophrenia, ED=eating disorders, OCD/

TS=obsessive-compulsive disorder/Tourette syndrome, PTSD=posttraumatic stress disorder, 

and SUD=substance use disorders.
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b. Relation between numbers of cases and genome-wide significant SNPs in GWAS. Lines 

show discovery paths for inflammatory bowel disease (IBD), schizophrenia (SCZ), height, 

and bipolar disorder (BIP). IBD has an exceptional genetic architecture and excellent 

clinical diagnostic specificity that enabled considerable discovery with relatively smaller 

numbers of cases. SCZ, height, and BIP follow more typical and approximately similar 

discover paths

c. Cartoon of hypothetical relation between number of cases and genome-wide significant 

associations for a human complex disease or trait. There is an initial dead zone whose length 

depends how many cases are accrued and the largest effect size. This is followed by an 

inflection point where the significant associations begin to accumulate and then a linear 

phase. Complexities arising from the true nature of the initially unknown genetic 

architecture could change the form of this curve importantly.
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Figure 4. Examples of genomic regions significantly associated with schizophrenia
Examples of genome-wide significant regions for schizophrenia with tracks showing the 

location (hg19), genes in the region, GWAS results from the literature, and the schizophrenia 

results (one green vertical bar per SNP, height corresponds to −log10(P-value) with 7.3 

equivalent to 5×10−8. (a) intronic association in CACNA1C, (b) association mostly upstream 

of DRD2, (c) multigenic association, and (d) intergenic association.
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