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I show that all phases reported experimentally in binary nanoparticle superlattices can be de-
scribed as networks of disclinations in an ideal lattice of regular tetrahedra. A set of simple rules
are provided to identify the different disclination types from the Voronoi construction, and it is
shown that those disclinations completely screen the positive curvature of the ideal tetrahedral lat-
tice. In this way, this study provides a generalization of the well-known Frank-Kasper phases to
binary systems consisting of two types of particles, and with a more general type of disclinations,
i.e. Quasi-Frank Kasper phases. The study comprises all strategies in nanoparticle self-assembly,
whether driven by DNA or hydrocarbon ligands, and establishes the universal tendency of superlat-
tices to develop icosahedral order, which is facilitated by the asymmetry of the particles. Besides its
interest in predicting nanoparticle self-assembly, I discuss the implications for models of the glass
transition, micelles of diblock polymers, and dendritic molecules, among many others.

Materials whose elementary units are nanoparticles, as
opposed to atoms or molecules, provide a new form of
matter organization that raises new fundamental ques-
tions and provides new opportunities to address unsolved
problems. The general strategy to program the assem-
bly of nanoparticles is to graft their surface with or-
ganic molecules, such as hydrocarbons[1], DNA[2, 3] or
neutral polymers such as PEG[4] so that the combined
nanoparticle-ligand system, the nanocrystal(NC), is sol-
uble in appropriate solvents and its assembly can be con-
trolled by external variables, such as solvent evaporation,
temperature or ionic strength.

While single component NC assemble into long range
structures of either fcc or bcc[2, 3, 5, 6], two component
systems characterized by the parameter

γ =
RB
RA
≤ 1 , (1)

where RA, RB are the two NC radii, exhibit a fascinating
cornucopia of crystalline and quasicrystalline phases[1, 7–
10]: Binary nanocrystal superlattices (BNSLs).

Predicting and understanding these phases has had
significant success in DNA systems[10–14]. In systems
whose capping ligands are hydrocarbons, NCs often be-
have as hard spheres, as evidenced by the clear but rather
imperfect correlation between the maximum of packing
fraction (as a function of γ) and the presumed equilib-
rium phases[1, 15, 16]. It is only recently, with the de-
velopment of the Orbifold Topological Model (OTM)[17],
that the circumstances under which NCs behave as hard
spheres have been clarified, together with detailed quan-
titative predictions of the structure of each BNSL[18].

Two obvious questions then arise: are those BNSLs
true minima of the free energy or just metastable states?
If they are true equilibrium states, what minimal ther-
modynamic coordinates are needed to fully unravel the
corresponding phase diagram? A possible very appealing
idea is that NCs would ideally pack as regular tetrahedra,
and experimental evidence exists to this statement[19],
but this is possible only in curved spaces, so instead,

FIG. 1. a.1) Example of a 2π
3

disclination transforming a
tetrahedra into an octahedra. a.2) The fcc lattice consists
of edges (in green) sharing two tetrahedra(blue) and octahe-
dra(red). b) Some constitutive elements (surface around a
given NC) of Quasi FK phases (full list provided in SI). c)
Disclinations considered in this study, see also SI.

they arrange in phases that best approximate such ar-
rangement in flat space. The primordial example are
Frank Kasper phases(FK)[20, 21], which can be regarded
as decurving the ideal tetrahedral lattice (the {3, 3, 5}
polytope) with (q = − 2π

5 ) disclinations[22–26]. Indeed,
it has been shown that disclinations completely bal-
ance the positive curvature and satisfy the zero Regge-
curvature[27] condition[24]

FD =
1

2

∫
R
√
gd3x =

∑
j=edges

δj lj = 0 , (2)

where the index j runs over all edges, lj is the length of
the disclination and δj is the excess/deficit of the sum of
all the dihedral angles within an edge over the flat result
of 2π.
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Although the focus of this paper is on BNSLs, the con-
sequences of this study extend to many other problems,
such as general studies of the glass transition [24, 28–31],
dendrimers and branched polymers[32, 33], or diblock mi-
celles consisting of copolymers with different rigidities[34]
and others[29]. Furthermore, algorithms exist to enu-
merate all possible lattices in terms of the disclination
networks, also known as the major skeleton, that satisfy
Eq. 2[35].

Assuming that the {3, 3, 5} polytope, which consists
of 120 vertices sitting at the surface of S3, represents the
configurations in which NCs would ideally crystallize, the
next question is what disclinations are available to de-
curve the polytope in the flat space we live in. The ro-
tational symmetry group of {3, 3, 5} is the regular icosa-
hedral group Y, which contains rotations of angles 2π

5
and 2π

3 . The former gives raise to 2π
5 qa and the latter to

2π
3 qb disclinations, where qa, qb are integers (Additional

details not central to this presentation are discussed in
SI). In this notation, FK phases are those whose edges
(defined by nearest neighbor lattice points) consist of
(qa, qb) ≡ (−1 or 0, 0). A Quasi Frank-Kasper is then de-
fined as any crystalline or quasi-crystalline phase whose
edges are characterized by general integers (qa, qb).

Disclinations are more easily visualized in Voronoi rep-
resentation. A (qa, 0)-disclination threads a Voronoi face
containing 5 − qa edges, see Fig. 1. The total dihedral
angle is that of 5− qa tetrahedra[24]

ψ5(qa) = (5− qa) arccos(1/3). (3)

2π
3 disclinations are identified from the number of

edges joining a given Voronoi vertex, as shown in
Fig 1. Because all vertices are joined by either 3 or 4
edges(corresponding to tetrahedra or octahedra), I inter-
pret a (0, qb)-disclination as the number of octahedra at
a given edge. The dihedral angle is

ψ3(qb) = −qb (π − arccos(1/3)− arccos(1/3))

= −qb(π − 2 arccos(1/3)) , (4)

where it is used that the dihedral of a regular octahedron
is π − arccos(1/3). Here, the extra arccos(1/3) arises
because the angle is defined relative to the tetrahedron,
and the minus sign ensures that the angle is positive. The
zero curvature Eq. 2 on a BSNL unit cell is

Nw∑
i=1

ni

Fi∑
j=1

δj lj =

Nw∑
i=1

ni

Fi∑
j=1

(2π−ψ5,j(qa)−ψ3,j(qb))lj = 0

(5)
where Nw is the number of different Wyckoff positions
of the lattice, ni the number of NCs on each Wyckoff
position, Fi the total number of faces of the i-th Voronoi
cell, and lj is the length of the corresponding disclina-
tion line. I will consider two definitions of curvature: In
definition one, I assume all disclinations lengths are the
same lj = le. In definition 2, lj is its value in flat space.

Lattice ql (qC = 5.1043) Nl (NC = 13.3973) fico

NaCl [5.0000, 5.1716] [12.0000, 14.4853] 0.00

CsCl [5.1429, 5.0718] [14.0000, 12.9282] 0.00

AuCu [5.1429, 5.0752] [14.0000, 12.9754] 0.00

MgZn2 [5.1000, 5.1087] [13.3333, 13.4632] 0.90

AlB2 [5.0526, 5.1522] [12.6666, 14.1549] 0.63

Cr3Si [5.1111, 5.0962] [13.5000, 13.2777] 0.89

Li3Bi [5.1429, 5.0913] [14.0000, 13.2051] 0.00

AuCu∗
3 [5.1429, 5.0114] [14.0000, 12.1380] 0.00

Fe4C [5.1892, 5.0321] [14.8000, 12.3979] 0.32

CaCu5 [5.1000, 5.1110] [13.3333, 13.4985] 0.75

CaB∗
6 [5.0000, 5.2196] [12.0000, 15.3758] 0.55

bccAB∗
6 [5.0323, 5.3232] [12.4000, 17.7318] 0.57

cubAB∗
13 [5.5000, 5.8378] [24.0000, 95.1175] 0.44

NaZn∗
13 [5.1538, 5.2000] [14.1819, 14.9935] 0.98

fcc∗ [5.1043, 5.1043] [13.3973, 13.3973] 0.00

TABLE I. Different lattices, zero curvature condition Eq. 7 us-
ing the two definitions of curvature, see discussion after Eq. 5,
and degree of icosahedral order, fico Eq. 8. The asterisk∗ de-
notes BNSLs with 2π

3
disclinations, where Nl does not equal

the average number of nearest neighbors. Further discussion
for bccAB6, cubAB13 and NaZn13 is provided in SI.

For example, an fcc lattice consist of Voronoi cells with
four fold faces and two 4-coordinated vertices, that is
(qa = 1, qb = −2). There is only one Wyckoff position
and Eq. 5 reads

FD(fcc)

12lfcc
= 2π−4 arccos(1/3)−2(π−2 arccos(1/3)) = 0 ,

(6)
using either of the two definitions of the curvature. This
result has the clear physical interpretation of each edge
consisting of two regular tetrahedra and octahedra, see
Fig. 1. Note that the same argument applies to the hcp
lattice, while the bcc result is the one given by the CsCl
phase. See SI for other BNSLs examples.

Using Eq. 3 and Eq. 4 into Eq. 5, the zero curvature
condition becomes

ql ≡
∑Nw

i=1 ni
∑Fi

j=1(5− qa(j) + 2qb(j))lj ≡M(γ)∑Nw

i=1 ni
∑Fi

j=1(1− qb(j)/2)lj ≡ L(γ)
= qC ,

(7)
where qC = 2π

arccos(1/3) ≈ 5.1042993 is the Coxeter statis-

tical honeycomb value[37, 38]. If all disclination lines
are of the same length and of type (qa, 0), the quan-
tity ql is the average number of tetrahedra per edge,
related to the average lattice coordination number by
NC = 12/(6− qC) ≈ 13.3973[24]. In any situation, Eq. 7
andNl = 12/(6−ql) can be compared against the Coxeter
values, thus providing a quantitative test on the accuracy
of the zero curvature condition.

In Fig. 2, the resulting disclination network is shown
for the twelve most relevant BNSLs, with conventions as
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FIG. 2. Twelve lattices and their respective disclination lines, drawn with the convention of Fig. 1. The radical Voronoi
tesselation as implemented in Voro++[36] is used.
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FIG. 3. Plots of L(γ) and ql(γ), see Eq. 7 (normalized to L(γc)
and ql(γc), where γc is the maximum of the packing fraction,
see Ref. [16]). L(γ) is strongly dependent on γ, but ql is
basically an invariant. The value of ψ (NaZn13) is provided
in [18].

in Fig. 1. There are two FK phases (MgZn2 and Cr3Si).
Particularly interesting is the NaZn13, which consists of
(0,−1 or 0)-disclinations. I label as Anti-FK any phase
with that property. The accuracy of condition Eq. 7 is
detailed in Table I. Rather remarkably, the two defini-
tions of curvature, see discussion following Eq. 5, almost
always bracket the statistical honeycomb qC , and this oc-
curs by a non-trivial cancellation of the different Voronoi
cells within the BNSL unit cell (with the exception of the
CsCl and AuCu). The quantity ql is invariant, basically
independent of γ, despite that both L(γ) and M(γ), see
Eq. 7, have a strong γ-dependence.

A measure of the degree of icosahedral order, defined
so that fico = 1 only for the {3, 3, 5} polytope, is

fico ≡
# five-fold faces

# faces
(1− # four-fold vertices

# vertices
) , (8)

defines a property of each BNSL that is independent of
γ, with actual values are shown in Table I. Clearly, FK
and anti-FK phases show the highest degree of icosahe-
dral order, and a few phases, namely NaCl, CsCl, AuCu
and AuCu3 show no icosahedral order at all. Still, those
phases are described by disclination networks where the
two curvature values bracket the zero curvature condi-
tion, arising after a non-trivial cancellation of all the dif-
ferent Voronoi cells.

Contact with experiments is made in Fig. 4, where the
observed phases are shown in the γ-fico plane. The gen-
eral trend is clear: for γ <∼ 1, CsCl or AuCu dominate,
then at around γ ≈ 0.82, the phases with highest degree
of icosahedral order begin to emerge, which gradually
decreases with γ. The absence of icosahedral order for
γ <∼ 0.4 and γ >∼ 0.8 is a result of those regions dominated

by single component NCs (SC regime), as SC phases with
icosahedral order necessarily have low packing fraction.
These results illustrate that icosahedral order is facili-
tated by NC asymmetry for 0.3 <∼ γ <∼ 0.82.

For hydrocarbon systems, the Cr3Si phase is absent.
This is expected, as for the γ-range where it is a FK
phase the packing fraction is very low[16]. The other
phases that do not conform to the general trend either
consist of NCs that do not act as hard spheres, as al-
lowed by OTM, such as AuCu3, Li3Bi and possibly Fe4C,
and cubAB13, which displays unusual properties[18]. A
reported A6B19[39] is not characterized with sufficient
precision to be included. A quasicrystalline DDQC-AT
phase is reported in Ref. [8], which combines features of
AlB2 and CaB6. Both phases have similar degree of icosa-
hedral order, fico ∼ 0.6, and the disclination networks
contain closed loops of (+1, 0) disclinations connecting
the smaller B-particles, while the larger A-A particles
connect with either (−1, 0) or (−3, 0). Another qua-
sicrystalline phases has been recently reported[40], which
competes with the NaZn13 phase, with high degree of
icosahedral order fico = 0.98 and a FK σ-phase.

In DNA systems[10], four phases are reported

CsCl → AlB2 → Cr3Si → bccAB6

γ [0.75, 1.0] [0.4, 0.6] [0.4, 0.5] [0.3, 0.4]
(9)

which nicely follow the trend in Fig. 4. The absence
of the other phases discussed arises from the need for
any A(B) NC to be surrounded by as many B(A) NCs
as possible to optimize DNA-hybridizations. Here, the
Cr3Si is possible because DNA stability does not require
high packing fraction[11]. Recently reported assembly of
bipyramid NCs Ref. [41] into FK phases suggests that
disclination networks and icosahedral order is a general
tendency for single component systems with different ge-
ometrical shapes, a topic that will need to be analyzed
in further studies.

Recent simulations [31] have shown that the glassy
state on S3 all but disappears. The clear tendency to-
wards icosahedral order reported in this study is facil-
itated by the size asymmetry, thus providing another
knob, = γ, Eq. 1 to investigate glass transitions. It also
opens the possibility that the BNSLs reported to date
are not true equilibrium states, but rather, those that
are most easily activated. Free energy calculations with
soft potentials[15, 16] and hard spheres[42] suggest that
those phases are equilibrium states. Still, rigorous res-
olution to these questions will require additional work.
Studies in µ-sized colloidal self-assembly[43], including
DNA[44, 45], where according to the OTM[18] particles
cannot display non-hard sphere behaviour, may provide
even better models to investigate the tendency towards
icosahedral order than the NCs discussed in this study,
as some phases with fico = 0 become suppressed.

I thank M. Boles for a critical and very insightful
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