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Abstract

Large-scale public policy changes are often recommended to improve public health. Despite 

varying widely—from tobacco taxes to poverty-relief programs—such policies present a common 

dilemma to public health researchers: how to evaluate their health effects when randomized 

controlled trials are not possible. Here, we review the state of knowledge and experience of public 

health researchers who rigorously evaluate the health consequences of large-scale public policy 

changes. We organize our discussion by detailing approaches to address three common challenges 

of conducting policy evaluations: distinguishing a policy effect from time trends in health 

outcomes or preexisting differences between policy-affected and -unaffected communities (using 

difference-in-differences approaches); constructing a comparison population when a policy affects 

a population for whom a well-matched comparator is not immediately available (using propensity 

score or synthetic control approaches); and addressing unobserved confounders by utilizing quasi-

random variations in policy exposure (using regression discontinuity, instrumental variables, or 

near-far matching approaches).
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INTRODUCTION

“Politics is nothing else but medicine on a large scale.”

— Rudolph Virchow

Public health researchers have long asserted that social, economic, and environmental 

determinants of health may be addressed through large-scale public policy interventions 

(79). In particular, fiscal policies (e.g., tobacco taxes), regulations (e.g., sanitation 

standards), and social safety net programs (e.g., poverty reduction programs) have been 

thought to produce important benefits for population health (24, 27, 34, 65, 72).

For public health researchers, however, a key concern has been the attribution of causality: 

Does the policy produce the health effects observed, or are the health effects caused by some 

confounding factor? For example, were lower rates of myocardial infarction (2) due to New 

York City’s ban on trans fats, because of better health care coverage, or because of another 

factor? Similarly, did California’s Proposition 99 (29), which increased tobacco taxes and 

banned smoking in workplaces, significantly lower smoking-related disease in the state, or 

was the decline merely a continuation of preexisting cultural trends?

Many public health interventions, particularly those at the individual or the household level 

(e.g., dietary interventions), rely on randomized controlled trials (RCTs) to balance the bias 

of unknown variables. However, practical, budgetary, and ethical barriers prevent large-scale 

policy changes from being evaluated through RCTs. For example, it would be challenging (if 

not comical) to randomize some New Yorkers to eat at restaurants where trans fats were 

banned and randomize other New Yorkers to eat at restaurants where trans fats were not 

banned.

Evaluating large-scale policies through classical cohort or case-control study designs poses 

related challenges. Exposure to the policy may not be random because a policy may 

specifically target a group for its higher disease risk (producing confounding by indication) 

(70). Hence, the resulting differences between the exposed and unexposed populations may 

not be from the policy alone but from population differences or selection bias. One of the 

most challenging differences to address between populations are unobserved confounders—

unmeasured factors that influence both the policy of interest and health outcomes among the 

exposed group, distorting the true relationship between exposure to the policy and new 

health outcomes. Consideration of unmeasured confounders becomes especially important 

when policies are more likely to be enacted in some communities than in others. For 

example, has California’s tobacco smoking rate been lower than Nevada’s smoking rate 

because of California’s strict tobacco control policies, or because Californians are more 

health conscious, and therefore both more likely to vote for an anti-tobacco ballot 

proposition and less likely to smoke even without the policy in place?

To address these challenges, public health researchers have leveraged several observational 

data analysis approaches that are derived mostly from the fields of economics, sociology, 

and political science (43, 80). In this article, we review classical and novel analytic 

approaches that have been adopted in the public health literature and have been applied to 

the task of evaluating the health consequences of large-scale public policy changes. Our 
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discussion is organized into three themes that emerged in our review as key challenges faced 

by public health researchers who analyze policy changes: (a) distinguishing a policy effect 

from time trends in health outcomes or preexisting differences between policy-affected and -

unaffected populations; (b) constructing a comparison population when a policy affects a 

population for whom a well-matched comparator is not available; and (c) addressing 

unobserved confounders.

REVIEW STRATEGY

We performed a PubMed database search in December 2015 to search across all available 

years for the Medical Subject Heading (MeSH) “Policy” and for original research articles 

with “Publication Type” listed as evaluation studies, reviews, cost-effectiveness studies, or 

meta-analyses. This search yielded 1,021 articles, and we applied the following criteria to 

them for inclusion in our review: (a) The article evaluates one or more policy interventions, 

which we defined as regulations, laws, fiscal policies, or mandates that influence a large 

population through a government authority at any level (e.g., county, state, nation, 

international treaty); (b) it incorporates a quantitative assessment of policy effects on one or 

more health risk factors or outcomes; and (c) it is not exclusively a commentary, letter, or 

theoretical simulation. We focused our review on public health studies in which a policy 

change occurred in a population and the researchers sought to examine the effect of the 

change on a change in health outcomes. Hence, we excluded studies that examined only 

fixed differences in policies and health status among groups, such as cross-national 

ecological comparisons of wealth inequality and mortality.

Thirty-nine articles met our inclusion and exclusion criteria. We first assessed the articles by 

populating a prespecified spreadsheet with information on study year and duration, policy 

evaluated, method(s) of evaluation, study challenges/limitations, and key findings. We 

subsequently classified articles into one (or more) of three categories: (a) distinguishing 

policy effect from time trends or preexisting differences, (b) constructing a comparison 

population, and (c) addressing unobserved confounders. For each category, we created 

subcategories on the basis of the methods we found commonly applied by the researchers: 

difference-in-differences approaches (under category a); propensity score and synthetic 

control approaches (under category b); and regression discontinuity, instrumental variables, 

and near-far matching approaches (under category c). Primary methodological references 

cited in each article were also reviewed to supplement our analysis, as further noted below.

DISTINGUISHING A POLICY EFFECT FROM TIME TRENDS OR 

DIFFERENCES AMONG COMMUNITIES

Seven studies in our review described a pre-post policy assessment (16, 25, 28, 31, 49, 66, 

74). These studies acknowledged the limitation of not statistically correcting for a time 

trend, i.e., not adjusting for changes in health outcomes over time that are occurring 

regardless of the policy, such as smoking rates declining due to smoking’s diminishing 

popularity. A methods chapter (68) referenced by one of these studies indicated that there is 

no conventional standard for selecting the starting time point for evaluating a time trend to 

subtract out its effect from a pre-post health evaluation. To illustrate this dilemma, see 
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Figure 1 (1). As shown in the figure, California’s cigarette sales were already dropping 

precipitously prior to the implementation of Proposition 99 in 1988, which brought forth 

various anti-tobacco measures. To correct for the secular trend in cigarette sales, one could 

draw a regression line through pre–Proposition 99 cigarette sales trends and examine how 

much lower sales were post–Proposition 99. But in which years should the trend line start: in 

1977, when the decline first becomes apparent, or from the first year of available data? 

Different choices of where to start the time trend line, and whether to reflect the trend as 

linear or nonlinear, could offer different estimates of the remaining policy effect.

Six studies used an alternative to simple pre-post analysis to address the dilemma of 

correcting for time trends: the difference-in-differences (DD) approach (19, 35, 44, 52, 61, 

71). Instead of comparing only health outcomes in a community before and after a policy 

implementation, a DD analysis (illustrated in Figure 2) additionally compares the change in 

health outcomes in the policy-exposed population to the simultaneous change in the health 

outcome in a comparable population unexposed to the policy. For example, to evaluate 

California’s tobacco control proposition, a DD analysis might compare smoking rates 

among Californians to smoking rates among Coloradans. Because Colorado did not 

implement similar tobacco control legislation during this time, the time trend in Colorado is 

assumed to project what would have occurred over time in the policy-affected California, 

had the policy not passed (Figure 2). In the DD analysis, the pre-post time point differences 

in smoking rates in California (smoking rate A1 prior to the policy and A2 after the policy) 

would be compared with the pre-post time point differences in smoking rates in Colorado 

(smoking rate B1 and B2, respectively). The difference in pre-post time point differences in 

smoking rates between the two states [the quantity (A2 − A1) − (B2 − B1)] would be 

attributed to the effect of the policy (see Figure 2). Hence, in accounting for a time trend, the 

DD approach accounts for unobserved confounders that might simultaneously affect both 

state populations similarly (e.g., national economic changes that could affect people’s ability 

to purchase tobacco).

Authors of the studies we reviewed performed the DD analysis by estimating the DD 

coefficient through a standard regression model:

where for individual i, Y is the health risk factor or outcome of interest (e.g., Y = 1 if the 

person is smoking and Y = 0 if the person is not smoking), “affected” is a dummy variable 

for whether the person lives in a policy-affected or -unaffected community (e.g., 0 = 

Colorado, 1 = California), and “time” is a dummy variable for the policy period (0 = pre-

proposition, 1 = post-proposition). Here, the β1 coefficient captures possible unobserved 

confounding differences between the populations in the two states prior to the policy; β2 

accounts for the time trend in smoking, even if no policy had gone into effect; and β3 is the 

key coefficient of interest—the causal effect of the proposition on smoking rates. β3 is the 

DD in smoking rates and is equivalent to the quantity [(A2 − A1) − (B2 − B1)], or how 

much more smoking rates dropped in California than they did in Colorado.
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The DD approach necessitates two critical assumptions: parallel trends and common shocks 

(23). The parallel trends assumption is that trends in the outcome of interest before the 

policy are similar in both the policy-affected and -unaffected communities. It is tested by 

running a second regression using the above equation, where time is a continuous variable 

(e.g., years) and the regression is isolated to the pre-policy period. If β3 is significant, the 

parallel trends assumption is violated, suggesting that the two states significantly differ in 

their pre-policy health outcome trends over time and presenting the need for a control group 

other than Colorado. If the β3 is insignificant, then Colorado is considered a valid 

comparator.

The common shocks assumption is, by contrast, untestable; it states that events occurring 

simultaneously or after the policy will affect both groups equally (e.g., the national economy 

may affect unemployment and associated cigarette sales but will affect Californians and 

Coloradoans equally). If, on the other hand, such shocks influence these states differently, 

this assumption is violated, and a source of confounding is potentially introduced. By taking 

the difference between the states’ data before and after the policy, the unobserved 

confounders that influenced Californians but not Coloradoans to pass the proposition are 

assumed to be “differenced out.” But, the DD approach cannot account for time-varying 

unobserved confounders (e.g., economic changes that affected one state more than the 

other), making the common shocks assumption often challenging to justify (68).

Although the common shocks assumption is one challenge to implementing the DD analysis, 

another challenge occurs when some subgroups of the policy-affected population are 

affected more than other subgroups. To study how a single subgroup might be most affected 

within a policy-affected group (such as a state), a triple differences or difference-in-

difference-in-differences (DDD) specification is often used. For example, the DDD study in 

our review evaluated whether the mortality rates were lower in a state that expanded 

Medicaid insurance for the poor, as compared with mortality in a comparator state that did 

not expand Medicaid insurance (75). The authors defined subgroups of people <65 years old 

(i.e., eligible for Medicaid) versus the subgroup ≥65 years (i.e., ineligible and therefore 

unexpected to benefit from Medicaid expansion). Dummy variables for the subgroups 

(subgroup = 0 for <65 years old and 1 otherwise) and interaction terms were added to the 

standard DD regression equation, so the revised DDD equation read as follows:

where the β7 coefficient became the policy effect coefficient. The interaction terms in the 

equation filtered out changes in mortality among ≥65 years subgroups (assumed to be 

unrelated to the Medicaid expansion policy) and changes in mortality among all subgroups 

in the Medicaid-expansion state (assumed to be unrelated to the policy but related to other 

factors trending differently in the expansion versus control state).
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One paper (36) highlighted that the DDD approach might be better than comparing pre-post 

policy mortality changes in the younger population to pre-post mortality changes in the older 

population within the same state because the latter approach accounts only for the state 

policy being studied, ignoring the effects of national policies on the outcome.

Two limitations or caveats accompanying the use of DD or DDD approaches were found in 

our review. First, one study found that DD or DDD formulations underestimated the 

standard error around the policy effect coefficient; the study’s researchers derived formulas 

to correct for this underestimation of the standard error (15). The second limitation was the 

risk of spillover effects (23), i.e., the possibility that policy-affected communities could 

influence policy-unaffected communities. Two studies we reviewed assessed for spillover by 

examining whether the population to whom the policy did not apply actually experienced a 

sudden change in outcomes at the time that the policy was implemented (63, 67).

CONSTRUCTING A COMPARISON POPULATION

The DD approach requires the availability of a policy-unaffected community (a control 

group) that reasonably approximates the policy-affected community prior to policy 

implementation. Because identifying such a community is often difficult, the studies we 

reviewed adopted two approaches to create a control comparator population: a propensity 

score matching (PSM) approach or a synthetic control approach.

Propensity Score Matching

Four studies used a PSM approach to form a comparator population for the policy-affected 

population (38, 45, 55, 71). All four had access to databases of individuals, some of whom 

were exposed to a policy of interest and others who were not. Yet, those unexposed often 

differed from exposed subjects in obvious ways, such as in income status or location. 

Therefore, the researchers developed a framework to select a subset of policy-exposed and -

unexposed individuals who appeared similar on key covariates of concern. For example, one 

study evaluated whether a policy to provide social support to all elderly persons in a city 

reduced the rate of hospitalizations among the elderly; the researchers had two data sets on 

elderly adults living in a policy-affected city, and another sample of elderly adults living in 

unaffected cities (55). Because some subjects had vastly different incomes and health 

conditions (e.g., dementia) that may have been relevant to hospitalization rates, the authors 

used propensity scores to create subgroups of policy-affected and -unaffected persons who 

were more comparable with each other (55). A propensity score measures the estimated 

probability that individuals in a data set will experience policy exposure, given their 

observed features such as age, sex, income, and location. A propensity score is provided for 

each individual using logistic regression, in which the policy exposure (0 = policy 

unexposed, 1 = policy exposed in the data set) is regressed against observed covariates of 

interest. For example, in the study of social support among the elderly, the authors used 

characteristics such as income and dementia status to identify similar pools of elderly US 

adults, some who were exposed to the elderly support policy and others who were not. Each 

individual in the policy-exposed group was matched to an individual in the policy-

unexposed group with the closest propensity score. During the matching process, a 
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maximum allowable difference in scores (caliper distance) was set, and many individuals 

could be matched to one person or many-to-many depending on circumstances, as detailed 

in a cited review article on choice of matching algorithm (6).

Once the groups were constructed, the researchers checked whether the distribution of 

observable covariates (e.g., dementia scores) were balanced between the two groups (e.g., by 

plotting the distribution of covariates among the groups) and then performed a DD analysis. 

If pre-policy data were unavailable, the postpolicy outcomes between the matched 

populations could be compared in order to estimate the policy effect (4). Studies also 

stratified individuals into groups on the basis of propensity scores, used propensity scores as 

weights in regressions (weighting by so-called inverse probability of treatment), or simply 

adjusted covariates in regressions using propensity scores (23, 32, 33, 34). However, these 

latter approaches were reportedly less likely to correct for systematic differences in 

characteristics among populations than was PSM, according to methodological papers cited 

in the literature we reviewed (5, 7, 8).

All the studies identified the assumption of “strongly ignorable treatment assignment” as a 

key limitation to the PSM approach. According to the assumption, only observed covariates 

included in the regression equation used to estimate the propensity score can affect the 

probability of being exposed to the policy. Because unobserved confounders are not 

addressed by PSM, the approach may lead to biased policy effect estimates. For example, an 

unobserved variable such as local city government debt could affect whether a person’s city 

council passes the policy to provide elderly support. It may also influence the risk of 

hospitalization because debt could result in diminishing services such as transportation to 

primary care medical visits, which could increase the risk of hospitalization among elders 

that rely on the service to receive preventive health care. To check if bias may be present, 

one methodologic paper recommended estimating propensity scores and policy effects using 

multiple alternative control populations to determine if the policy effect remains consistent 

across alternative comparator populations (69).

Another key limitation of PSM is that inferences from the approach can be made only when 

both policy-unaffected and -affected individuals have nonzero probabilities of being in either 

group (known as the common support requirement). The approach cannot permit inferences 

on populations where investigators can find no matched person to reference in comparison.

Synthetic Control Approach

Synthetic control analysis, another novel approach that rectifies the problem of not having 

an ideal control group, was used by one study to evaluate smoking rates in California after 

Proposition 99 (1). This method leverages insights from PSM but can be applied to 

aggregate populations (e.g., states) rather than to individuals to minimize the distance of 

observed covariates between the policy-affected and -unaffected population by constructing 

a new synthetic control population composed of weighted available control populations 

(e.g., a synthetic control California composed of a weighted Colorado, Nevada, and 

Oregon).
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The weights are constructed for treatment group J = 1 (e.g., California), and J = 2…N 
possible control groups (i.e., all states that did not implement a tobacco control policy), 

where yit is the outcome of the group i at time t. Weights wJ are selected to 

, or the difference in observed outcomes between the 

treated and weighted control groups in the pre-policy period, where xJ are observable 

characteristics correlated to the outcome (e.g., a state’s poverty rate is correlated to its 

smoking rate). The policy effect is the difference between the observed outcome in treatment 

group J = 1 after introducing the policy outcome and the counterfactual outcome constructed 

from the control groups, estimated as . Figure 3 provides a conceptual 

illustration.

The factor weighting method in the synthetic control approach matches time-varying, 

policy-affected populations’ observed health outcomes with a set of their time-varying 

observed covariates not affected by the intervention (e.g., distributions of characteristics in 

each state such as poverty rates). A good pre-policy match should occur only if time-varying 

unobserved confounders are equally distributed among the exposed and synthetic control 

groups, making the method potentially less susceptible to bias than a standard DD approach.

In the study using this novel method (1), researchers conducted a placebo analysis (or 

falsification test) to measure changes in the health outcome when treating each control 

population as an intervention population (Figure 3). The placebo analysis involves redoing 

the analysis after substituting group J = 1 for each of the other policy-unaffected groups and 

having the treatment group enter among the control populations. The placebo analysis 

reveals what differences between the policy-affected and synthetic unaffected population are 

to be expected when no policy has been passed, owing to random variation; hence, one can 

evaluate whether the observed effect size in the policy-affected population is unusually large 

relative to the degree of random variation in the data set and therefore indicative of a real 

policy effect (Figure 3).

Using Quasi-Random Variation

An RCT controls for unobserved confounding factors by randomizing individuals to either 

the treatment group or the placebo group; with sufficiently large sample size, unobserved 

factors should become equally dispersed among the two groups. The studies we reviewed 

were unable to simulate a perfect RCT, but we used various approaches to mimic 

randomization for population subgroups.

Regression Discontinuity

Four studies used regression discontinuity (RD) to perform policy analyses (30, 40, 60, 62). 

The RD approach is preferred when a control group is difficult to construct, for example 

when a national policy went into effect, leaving limited ability to compare outcomes across 

states (47). The approach compares people who minimally qualify for being affected by a 

policy to those who minimally missed qualifying and assumes that the randomness of being 

just slightly below or slightly above the threshold for being affected by the policy effectively 

randomizes people near the threshold to being affected or not (see Figure 4).
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For example, one study found in our review used an RD approach to evaluate whether a 

national program that subsidized healthy foods among low-income schools improved 

students’ intake of fruits and vegetables (62). In this evaluation, populations of children at 

schools just below the neighborhood-level income threshold for being included in the 

program were compared with populations of children at schools where the neighborhood-

level income minimally exceeded the threshold for eligibility.

A linear regression framework for estimating the policy effect was written as

where for individual i (program-eligible children), Y is the outcome of interest (e.g., fruit 

and vegetable intake). “Group” is a binary variable referring to whether individual i is in the 

policy-affected or -unaffected group (1 if school receives the program, 0 otherwise), 

“qualifier” refers to the criteria that is used for policy eligibility (neighborhood income for 

individual i ) and “threshold” refers to the cut-off point for the policy (neighborhood income 

level to qualify for the program).

The above regression equation plots a line through the X–Y plot between the qualifier 

(income) and the outcome (fruit/vegetable intake), allowing for a shift in the slope and 

intercept of the line among people who are policy-affected versus those who are policy-

unaffected (see Figure 4). If the policy effect is large, the regression will show a 

discontinuity at the point of threshold for policy eligibility. Although none of the studies we 

reviewed employed this design, the above study noted that the regression equation can also 

be estimated if the threshold for policy enrollment is not a sharp threshold cut point but 

rather a gradual cut point (e.g., a sliding scale for income eligibility), by using a fuzzy RD 

approach, which revises the regression equation to estimate probabilities of inclusion into 

the policy (3).

The studies we reviewed highlighted several important caveats to the RD approach. First, the 

RD approach does not perfectly mimic the generalizability of a randomized trial because it 

uses only data from individuals near the cut point for treatment (it estimates a local average 

treatment effect). It also focuses on a subset of the overall population and, because of the 

reduced sample size, has limited power compared with an RCT. Second, the threshold must 

be a truly randomizing factor (a point that is not itself related to the outcome) to account for 

the unobserved factors that differ between people who are affected versus those unaffected 

by the policy. For example, the fruit/vegetable program evaluation should apply to children 

whose schools are assigned on the basis of their neighborhood, not to those whose parents 

can select a school. Conceivably, parents conscious of eating more fruits and vegetables may 

select a program-participating school for their child if they have the ability to do so. To 

check for such manipulation in the RD analysis, researchers performed a density test, which 

plots the density of observations of the qualifier variable (i.e., neighborhood income) to 

ensure that the distribution does not have a notch (see Figure 4) near the threshold point to 

qualify for the policy. The presence of a notch would suggest, for example, that people are 

misreporting their income to qualify (53).
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A falsification test was also commonly completed among the RD studies we reviewed. 

Doing so involves performing the RD analysis with an outcome variable that is determined 

before the policy effect takes place. If the discontinuity in the regression is present before 

the policy was proposed, then it is unlikely due to the policy.

Finally, studies also indicated that an RD approach could reasonably isolate policy effects 

from other treatment effects and prevent false attributions of causality only if the threshold 

for qualification was not being used by other programs. For example, the fruit/vegetable 

program threshold should not also be the threshold to qualify for other supplemental 

nutrition assistance.

Instrumental Variables

Not all policies being studied have a clean threshold for affecting a subset of the population, 

which prevents investigators from using an RD approach. Many policies are diffused among 

individuals, households, and neighborhoods, with complex reasons for whether a population 

is affected by the policy or not. In such cases, 22 studies in our review used instrumental 

variable (IV) designs to estimate policy effects (11, 17, 18, 20, 21, 22, 26, 32, 33, 37, 39, 41, 

42, 46, 50, 54, 56, 57, 58, 64, 73, 78). An IV is a factor that is related to the outcome of 

interest only by way of randomly encouraging or discouraging exposure to the policy (Table 

1 lists key requirements for a valid IV, and Figure 5 presents a conceptual illustration).

One study investigated whether a federal program that subsidized food purchases for low-

income Americans was inadvertently contributing to obesity by encouraging the purchase of 

sugar-sweetened beverages such as soda (12). Previous research had correlated participation 

in the program with higher rates of drinking sugar-sweetened beverages and higher obesity 

rates (14, 48). Yet, many unobserved confounders, such as living in a low-income 

neighborhood, may affect the likelihood of both participating in the nutrition program and 

consuming sugary drinks.

Because conducting an RCT and randomizing some, but not all, low-income Americans to 

the food subsidy program would be unethical, researchers used an IV approach. Study 

investigators selected a random factor that was uncorrelated with the outcome (sugary drink 

consumption) but encouraged or discouraged people to participate in the nutrition program. 

The random factor (IV) was whether a person lived in a state that required fingerprinting to 

sign up for the nutrition program. States that historically required fingerprinting, such as 

California and New York, discouraged some eligible persons from participating, whereas 

states that did not require fingerprinting, such as Nevada and Pennsylvania, were less 

discouraging to eligible persons.

The IV design mimics a matched-pair randomized trial, in which researchers randomized to 

the intervention or placebo group people who were similar. They then compared the sugary 

drink intake between the “encouraged” and “discouraged” groups, providing a local average 

treatment effect estimate of the nutrition policy on sugar drink consumption.

The IV analysis used a two-stage regression method, where the first-stage regression is
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and the second stage is

where X is the probability of policy exposure (e.g., being enrolled in the nutrition program), 

Y is the health outcome of interest (sugary drink consumption), and β2 identifies the 

estimated policy effect on health.

IV analysis has several requirements (Table 1). Most importantly, the selection of the 

instrument must truly provide random exogenous variation into the system, such that a third 

factor should not affect both the instrument and the outcome of interest and, in turn, the 

outcome should not be able to affect the instrument (reverse causality). Therefore, IV 

selection must be based on logical reasoning and knowledge of the policy and population. 

However, if the instrument is correlated with the error term, then the IV is likely invalid (13).

The selection of a weak instrument is another limitation. Although an instrument may 

encourage or discourage individuals in the program being studied, it may lack a definitive or 

strong influence. As shown in Figure 5, individuals can be noncompliant with the IV in 

responding to the random encouragement. A weak instrument degrades the reliability of 

policy effect estimates, potentially biasing estimates between the error terms in the two 

stages of IV analysis and leading to erroneous effect size estimates. However, the strength of 

an instrument can be tested; the F-statistic in the first-stage regression equation above should 

be larger than at least 10 (although some research suggests a conservative cutoff of 13) (76).

Near-Far Matching

Two articles that faced the problem of weak IV used the newly devised strategy of near-far 

matching, which combines the benefits of PSM with IV techniques for analysis (51, 59).

Near-far matching also mimics a matched-pair RCT, as with standard IV analysis, but 

strengthens a weak instrument (see Figure 6) by simultaneously matching individuals in the 

data set to be as similar as possible (“near”) in their observed characteristics and as different 

as possible (“far”) in their values of an IV. For example, one study that examined birth 

outcomes attributable to a policy to fund new centers for treatment of high-risk pregnancy 

used distance to the hospital as an IV (51). However, the IV was weak (first-stage F-statistic 

test <10) because distance is only one of several considerations a mother makes when 

choosing where to give birth (51). Hence, the researchers used near-far matching to compare 

birth outcomes among otherwise-similar mothers for whom the IV was greatly different (i.e., 

they lived at very different distances to the hospital).

One advantage of near-far matching is its validity when the outcome of interest is 

dichotomous (e.g., the presence or absence of disease), unlike in classical IV approaches (9). 

In addition, by including an IV to effectively randomize people into the policy-exposed 
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versus -unexposed groups, the near-far approach has the advantage of estimating causal 

effects even when a program is affected by confounding by indication, i.e., program 

enrollment is driven by an individual’s health condition (70). However, a key disadvantage 

of the near-far approach is that the matching may reduce the effective sample size of the 

assessment. Hence, there is a trade-off between how closely matches are performed (or how 

“near” to make matched individuals on observed covariates) versus how “far” to have them 

on the IV. The implications of alternative strategies for balancing these competing priorities 

are still under investigation (10).

REINVIGORATING POLICY EVALUATION IN PUBLIC HEALTH

Our review reveals that public health researchers are increasingly gaining knowledge and 

experience in policy evaluation by borrowing study design approaches from the fields of 

econometrics, sociology, and political science—particularly for the common situation in 

which RCTs are not practically or ethically feasible. Our review indicates that, when a 

population is available to serve as a comparison group for a policy-affected population, the 

DD approach can offer advantages over a simple pre-post policy analysis focused on the 

affected population alone. Specifically, the DD approach can help correct for policy-

unrelated time trends in the health outcome variable. However, the method requires 

assumptions, including the similarity of the comparison group’s health outcomes over time 

to the policy-affected population of interest. When an ideal comparison group is unavailable, 

the methods of PSM and, particularly for aggregate-level population statistics, synthetic 

control analysis may offer the opportunity to construct an artificial comparison population 

for the policy-affected population. When the policy is introduced or enforced in one 

population and not in a neighboring population, public health researchers can also use RD 

designs or IV designs (including the near-far matching variant for weak instruments) to 

estimate the local policy effect among people who are near the border zone of being 

potentially affected or unaffected by a policy.

None of these methods fully achieves the strength of an RCT in controlling for all 

unobserved covariates; however, they attempt to approximate such a trial as closely as 

possible for the populations of interest by minimizing bias in policy effect estimates from 

both observed and, to some extent, unobserved confounding. Most importantly, they offer 

opportunities to study policies more rigorously than simply performing the before and after 

comparisons that we found most common in the public health literature on policy evaluation. 

As we seek to better evaluate the health impacts of our public policies, we must also 

remember that the ecological fallacy—the risk of falsely attributing health effects to a policy 

because both policy passage and aggregate statistics are correlated owing to some 

confounder—must be balanced against the individualistic fallacy—that analysis of 

individual-level data are too often used to make inferences about whole populations (77). 

Large populations are not simply the sum of individual health outcomes but complex groups 

with interdependencies, producing the daunting task of identifying how best to analyze 

individuals, households, neighborhoods, countries, and whole societies. No single analytic 

approach can therefore replace an experienced, careful understanding of the population 

being studied, the policy being examined, and how the two interrelate.
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Increasing our understanding of policy evaluation approaches may enhance our ability to 

prospectively collect data needed to perform valid analyses of large public policy 

interventions that affect public health. For example, when new legislative measures are first 

being proposed, we can anticipate which types of data to collect from both intervention and 

control groups to prospectively evaluate enacted policies through the methods outlined here. 

We hope that our increasing consciousness and planning will advance us to an era where 

observational research on large-scale policies that theoretically affect public health is 

considered highly valid and feasible and not simply an exceptional natural experiment 

evaluated through questionable correlations of aggregate data.
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Figure 1. 
California’s cigarette sales per capita. Proposition 99, which brought forth new tobacco 

taxes and clean air laws, was implemented in 1988. A problem with simple pre-post analysis 

is that cigarette sales were already declining prior to implementation of the proposition. One 

asks, then, did implementation of the proposition accelerate this decline?
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Figure 2. 
Illustration of difference-in-differences analysis. Two groups are followed over time, where 

the difference between the groups before the intervention affects one group is assumed to be 

the likely difference that would have been observed afterward between the groups if the 

intervention had not occurred (hence, the intervention group would have the purple dashed 
line trajectory without the intervention). The difference between the dashed intervention 

group point after the policy and the observed intervention group result is estimated to be the 

policy effect.
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Figure 3. 
Synthetic control analysis. (a) Intuition behind synthetic control analysis. The control group 

populations are reweighted to match predictors of the health outcome in the intervention 

group, creating a synthetic intervention group. (b) Example of synthetic control analysis 

applied to tobacco smoking control policy in California. Independent reproduction of results 

from Reference 1. California, under the tobacco control regulation Proposition 99 (enacted 

in 1988, gray dashed line), is seen to deviate significantly from the synthetic California 

constructed as a weighted average of trajectories of other states, where the weights are 

determined by matching the predictors of tobacco smoking among the control states with the 
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values of predictors of tobacco smoking in California. (c) Example of a placebo analysis. In 

this placebo test, states from the control pool are swapped out for California in the 

reweighting procedure, such that the weighting is reconducted as if one of the control states 

passed the new policy and the intervention state is now a control state. By doing all possible 

combinations of this swapping procedure, we can observe whether the observed trajectory of 

health outcomes in the intervention state is consistent or significantly inconsistent with all 

possible trajectories of health outcomes from all other states. Here, we see a comparison of 

Colorado’s smoking trajectory to a synthetic Colorado, which does not significantly differ 

from the observed trajectory.
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Figure 4. 
Regression discontinuity designs. Suppose we are evaluating the impact of a nationally 

subsidized, school fruit and vegetable program in which children at schools just below the 

neighborhood-level income threshold are included in program, whereas children that exceed 

the threshold are ineligible. In a theoretical data set, we can see in panel a that a 

discontinuity in fruit and vegetable intake appears on either side of the 250% federal poverty 

level cut point; however, in panel b we see that counties may be misreporting income levels 

so that children may qualify for a program-participating school because there is a notch 

showing abnormally high densities just above the 250% federal poverty line, suggesting 

misreporting of income levels to qualify for the program.
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Figure 5. 
Principles behind instrumental variables analysis. (a) Classical instrumental variables design. 

(b) Comparing an instrumental variable to a randomized controlled trial reveals the problem 

of weak instruments. Weak instruments are those that randomly encourage members of the 

population to enter into a program or not, but many people can be noncompliant and not 

abide by the random encouragement.
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Figure 6. 
The intuition behind near-far matching. Compare with Figure 5b. As in a matched-pair 

randomized controlled trial, individuals are first matched on observable characteristics, 

which increases the probability that the influence of the instrumental variable will be to 

encourage persons into the policy of interest or not. As such, otherwise similar people (near 

to each other on observable characteristics) who receive different levels of encouragement 

into the program (far values on the instrumental variable) are likely to have different 

probabilities of enrolling into the program under study. A weak instrument is made stronger 

through this method.
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Table 1

Key requirements for a valid instrumental variable (see also Figure 4)

Requirement Description

Exclusion restriction Any effect of the instrument on health must be mediated by exposure to the policy of interest

Exogenous The instrument must be randomly distributed and uncorrelated with the unobserved or unmeasured characteristics 
of individuals

Meaningful effect The instrument must reliably predict the policy exposure (a strong instrument)

Monotonic The effect of the instrument on the policy exposure is not smaller than the exposure that would occur without the 
instrument

Stable unit treatment value The value of the policy variable and the relationship between the policy variable and health outcome in one 
individual must not be affected by variations in these factors among other individuals
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