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Abstract

Synthesizing spatial patterns with genetic networks is an ongoing challenge in synthetic biology. A 

successful demonstration of pattern formation would imply a better understanding of systems in 

the natural world and advance applications in synthetic biology. In developmental systems, 

transient patterning may suffice in order to imprint instructions for long-term development. In this 

paper we show that transient but persistent patterns can emerge from a realizable synthetic gene 

network based on a toggle switch. We show that a bistable system incorporating diffusible 

molecules can generate patterns that resemble Turing patterns but are distinctly different in the 

underlying mechanism: diffusion of mutually inhibiting molecules creates a prolonged “tug-of-

war” between patches of cells at opposing bistable states. The patterns are transient but longer 

wavelength patterns persist for extended periods of time. Analysis of a representative small scale 

model implies the eigenvalues of the persistent modes are just above the threshold of stability. The 

results are verified through simulation of biologically relevant models.
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Introduction

Patterning in living organisms has been a topic of interest across many fields of study and is 

readily observed in body coloration (1, 2), embryonic development in Drosophila (3) and 

organization of neural networks (4). However, reproducing these patterns in synthetic 

biology remains a challenge. Zaikin and Zhabotinsky (5) were the first to obtain spontaneous 

two-dimensional dynamic patterns in a chemical reaction system. This was also the first 

experimental observation of patterns with biological implications and a physical explanation 

of this was provided in (6). Shortly after, more concrete relations between patterns and 

biological systems were developed through models (7, 8). Since then, there have been a 

multitude of models that have been shown to give rise to similar patterns (9, 10). Many of 

the models relevant to biological systems stem from Turing’s famous 1952 publication (11) 

and the activator-inhibitor system built on Turing’s theory by Gierer and Meinhardt (7). The 

activator-inhibitor system has been synthesized experimentally in chemical reaction systems 

(12–14); however, proving the plausibility of Turing patterns emerging from a genetic 

regulatory network has been a challenge still in pursuit today. The main limitation is the 

narrow parameter range that satisfies the patterning criteria and the lack of biological parts 

available to fine-tune a genetic circuit that meets these criteria.

Several results in the literature depart from the activator-inhibitor architecture and propose 

alternatives based on more readily realizable genetic networks. Mechanisms involving one 

diffusive signaling molecule have been proposed through mathematical models (15, 16). 

Experimental designs have departed from the Turing mechanism altogether and have created 

patterns through growth rate dynamics coupled with a single diffusive molecule (17, 18), 

spatial manipulation of inducers (19, 20) and spatial arrangement of multicellular systems 

with quorum signaling molecules (21, 22).

In this paper, we show that patterns can also emerge from a bistable system where diffusible 

molecules create a “tug-of-war” between opposing states. This could have significant 

implications towards pattern formation by genetic regulatory networks in synthetic biology. 

Obtaining the necessary parts and parameter range for pattern formation is more feasible 

since there are a multitude of genetic network motifs that can result in bistable behavior (23) 

as observed in many biological systems, such as the Drosophila embryonic patterning 

network (24, 25), two-component signaling networks (26), and the galactose regulatory 

network (27, 28).

We show that we can obtain specific patterns through spatially-cued initial conditions and 

that spontaneous patterns can also emerge from homogeneous initial conditions. Previous 

work tells us that non-homogeneous steady state solutions in a convex domain are unstable 

(29–35); however, we show that long wavelength stationary spatial profiles can persist on 

long enough time scales to be relevant in biological contexts. Such behavior has been 

observed in chemical reaction networks (36) and phase transition in fluids (37) but has not 

been explored in genetic networks. The primary purpose of this paper is to demonstrate the 

relevance of this phenomenon in spatial patterning by genetic networks, in particular, a 

network of synthetic toggle switches coupled with diffusive molecules.
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The tug-of-war mechanism is different from the spatio-temporal instability revealed by 

Turing. In Turing patterns, the zeroth spatial mode around a homogeneous steady state is 

stable and higher modes are destabilized by diffusion; this is categorized as type-I instability 

(38). By contrast, the zeroth spatial mode corresponding to the saddle point of the bistable 

system is already unstable, giving rise to what is termed type-III instability in (38). Each 

type of instability can be further categorized into stationary and oscillatory depending on 

whether the eigenvalues at the onset of instability are real or complex. In the case of type-III 

instability, linear analysis predicts the possibility for stationary patterning on a large length 

scale; however, most of the analysis to date on type-III systems is focused on oscillatory 

instabilities (38).

We focus on toggle switch dynamics, as mutual gene repression is an archetype readily 

found in genetic networks (Fig. 1). We first conduct an in depth study of boundary formation 

in a one-dimensional space (Fig. 1A) as a precursor to pattern formation in a higher order 

model in two-dimensional space (Fig. 1B). We use a representative model to gain insight 

into the key dynamics at play. We next proceed to two dimensions and demonstrate 

patterning through simulation of a bistable system architecture proposed in (39). We 

investigate pattern formation in the presence of leaky gene-expression (or nonzero gene 

expression under full repression) and cross-talk, which occurs when transcription factors 

bind to non-corresponding promoter sites. We find that a small amount of leakiness and 

cross-talk permits higher frequency modes to persist longer but too much obliterates 

patterning altogether. Finally, we consider an asymmetric circuit reflected by unequal 

diffusion coefficients and production rates. We show that a perfectly symmetric system is 

not required to sustain patterning.

Results and discussion

A toggle switch with diffusion can generate prolonged spatially-cued patterns in a one-
dimensional space

We first consider the case of a bistable system with diffusion in a one-dimensional space to 

understand the factors at play in patterning. Analysis in one dimension further gives insight 

into methods of boundary formation in the development of organisms. For example the gap 

gene network involved in Drosophila embryonic patterning can be described as two weakly 

coupled toggle switches (40) and it has been proposed that bistability allows for sharp 

boundary formation (24).

We consider a two-state model of two mutual genetic repressors with diffusion, adapted 

from Gardner et al. (41) to include diffusion

(1)

with Neumann boundary conditions
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(2)

and repression expressed by the following nonlinear function

(3)

We choose the initial gradients such that they represent induction from potential transient 

morphogens (Fig. 2A). For example, early regulation of mRNA in the gap gene network is 

based on maternal gradients and cross-regulatory interactions are delayed during early 

accumulation of proteins (42). Hence, we consider initial conditions that equally bias each 

side towards an opposing state described by the following equations

(4)

where u* = v* is the saddle point of the bistable system. Note that we add a noise term to 

represent spatial variability in gene expression. The term randn(σ, x) represents a 

pseudorandom number selected from a normal distribution with standard deviation σ and 

zero mean at point x in space.

Figure 2B shows a simulation of system (1,4) with σ = .5 nM. The number of molecules u 
are plotted as a function of time and space. Figure 2C shows the spatial profiles of u and v at 

time t = 1000 min. In this case we see that there is a clear and persistent divide between the 

side dominated by u and the side dominated by v. It may appear from Fig. 2B that we have 

reached a stable steady state profile. However, if we continue to simulate the system for a 

longer time, we find that the divide breaks eventually and one state wins over the entire 

space, as seen in Fig. 2D. The tension between the two opposing states on either end creates 

the tug-of-war that results in this prolonged spatial profile. In the following sections we 

show mathematically that non-homogeneous steady state profiles like the one observed in 

Fig. 2B–C indeed exist, but are unstable due to an eigenvalue barely above the threshold of 

stability. The proximity of this eigenvalue to zero results in the prolonged transient near this 

steady state.

In Fig. 2E–F, we examine the effects of the domain length and stochastic initial conditions 

on the transients of the boundaries. Given that the initial conditions are stochastic, we run 50 

simulations at each chosen domain length and find the time required, t*, to reach a 

homogeneous state. Numerically, we define the system to have a homogeneous state when 

the difference between minimum and maximum expression levels across the domain is less 

that .01nM. This gives a measure of the persistence of spatial inhomogeneity. For each 
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condition we calculate the average time, μ(t*), and the corresponding coefficient of variation 

σt*/μ(t*). As the domain length increases, we find that the co-existence of the two states 

persists longer, however, there is an increase in variability of the transients as measured by 

σt*/μ(t*). The shorter transients at smaller domain lengths have the least variability.

A representative bistable model highlights conditions for non-homogeneous steady state 
solutions

To gain further insight we analyze a simpler model that exhibits the same mechanisms for 

pattern formation. Derivation of a stability condition for the saddle point gives the range of 

spatial modes that can exist and a lower bound on the domain length required to sustain a 

non-homogeneous solution. Steady state analysis verifies that such solutions exist.

We replace the repressive Hill function by a symmetric nonlinear function that is simpler to 

work with but is, similarly, bounded and monotonically decreasing. To ease analysis without 

loss of generality we set γ = 1. We choose to model the mutual repression by the nonlinear 

function

(5)

where α > 1 for bistability. We find that the stability condition for each of the spatial modes 

at the saddle point is given by

(6)

See Text S3 for the derivation. Note that the zeroth mode is unstable but as k increases we 

move closer towards the threshold for stability, which confirms a type-III instability (38). We 

should expect observed patterns to be dominated by the unstable spatial modes. It follows 

from equation (6) that, for

(7)

all modes aside from the zeroth mode are stable and thus, we do not expect a non-

homogeneous solution.

We now consider steady state solutions by setting the time derivatives to zero. This allows us 

to then rewrite the two-state PDE (1) as a four-state ODE system with respect to the spatial 

variable x:
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(8)

Given the odd symmetry of f(·), setting v = –u allows us to reduce (8) to a two-dimensional 

Hamiltonian system (Text S1). Trajectories of the Hamiltonian system (Fig. 3A) from x = 0 

to x = L correspond to steady state solutions of the PDE with spatial domain [0, L], and the 

boundary conditions are satisfied if the trajectory starts and ends on the horizontal axis:

(9)

Similar methods have been applied to finding traveling wave solutions in domains of infinite 

length (43). In Fig. 3A the concentric circles represent solutions with different state 

boundary conditions. The corresponding domain length is the half circle trip time given by

(10)

We note that the length is normalized by the diffusion coefficient through the change of 

variable . Therefore, increasing the length is equivalent to decreasing the diffusion 

coefficient. Figure 3B shows the steady state solution corresponding to L = 1.5mm. Figure 

3C shows the calculated domain length corresponding to each solution. The domain length 

approaches infinity as u(0) approaches the stable equilibrium points Ŧu* of the bistable 

system. As the boundary condition u(0) approaches zero, the corresponding domain length 

approaches a finite positive value that is consistent with the threshold in (7). Non-

homogeneous solutions do not exist for domain lengths below this value.

Eigenvalue analysis explains the prolonged transient behavior of non-homogeneous 
steady state solutions

Since we are concerned with the transients of the solutions, we first discretize the PDE (1) in 

space to find steady state solutions analogous to the ones found above for the PDE. Next, we 

calculate the eigenvalues of the linearization about the computed steady state profiles. We let 

n = ⌊L/Δx⌋ and select Δx = .01mm for a close approximation. The diffusion term is replaced 

by a coupling term across neighbors (i.e. d(ul−1+ul+1−2ul), where l ∈ [1, n−1] is a spatial 

index), and the zero flux boundary condition with d(u2 – u1) and d(un−1 – un) on the ends of 

the domain. The parameter mapping is given by d ≡ D/(Δx)2 (Text S2). Figure 4A shows the 

solution profile synonymous to a half circle trip in Fig. 3A. We plot the maximum 

eigenvalue for the linearization around this profile for various domain lengths in Fig. 4B. 

Although there is always a single positive eigenvalue implying instability, this unstable 
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eigenvalue approaches zero as the normalized domain length increases. This explains the 

slow transients with longer domain lengths seen in Fig. 2E.

Next, we investigate whether higher frequency patterns can exist. In Fig. 4C, we choose a 

domain length L = 10mm, and plot all the solutions corresponding to the boundary 

conditions u(0) = –u(L). Indeed, the system does admit higher frequency steady states, 

which are synonymous with a full circle or even multiple circular trips in Fig. 3A. We plot 

the maximum eigenvalue of the linearized system for each profile in Fig. 4D. We see that 

although the system admits multiple periodic steady states, the instability associated with 

higher frequency steady states is more severe. In this specific example three of the patterns 

yield small eigenvalues with time constants 18 min, 594 min, and 3.56 × 109 min. Therefore, 

we expect to see prolonged patterns composed of low spatial frequency steady states.

An unbiased “tug-of-war” leads to spontaneous patterns in two-dimensional space

We have shown that non-homogeneous steady state solutions exist in one-dimensional space. 

We now explore the implications of the tug-of-war mechanism in two-dimensional space and 

we show that spontaneous patterns can emerge from unbiased initial conditions. Consider 

again the two-state model of the toggle switch

(11)

with diffusive molecules and Neumann boundary conditions. Figures 5A–B show a phase 

portrait for a symmetric toggle switch (i.e., αu = αv and γu = γv). There is one unstable 

saddle point and two stable equilibria. The scattered points represent varying initial 

conditions in space. Without diffusion, none of the individual trajectories assumed by each 

of the initial conditions can cross the separatrix (see Fig. 5A). With diffusion, a set of initial 

conditions biased towards one steady state will cause all points to converge to that steady 

state (see Fig. 5B). However, a non-homogeneous profile can be prolonged through random 

initial conditions with high variability (Text S4). In the case of unbiased initial conditions, 

the equally attracting forces due to diffusion keep the trajectories centered on the separatrix 

for an extended period of time (see Fig. 5B). This phenomenon allows patterns to emerge 

without any spatial cues. The tug-of-war keeps the zeroth mode from growing while the rest 

of unstable modes grow. Figure 5C shows simulations of system (11).

A toggle switch with quorum sensing molecules produces patterns in two-dimensional 
space

We now explore patterning in realizable network based on the toggle switch. Nikolaev and 

Sontag in (39) propose a symmetric toggle switch design with quorum-sensing molecules 

and apply monotone systems theory to find conditions for guaranteed homogeneity in the 
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system’s steady state response. In this work we investigate the potential for pattern 

formation from this design by adding a spatial dimension to the lumped model of (39).

We describe an example of such a system that can be built with current tools in synthetic 

biology in Fig. 6A. We propose a design utilizing biological components and cellular 

signaling systems used in (44). Starting with the toggle switch conceptual design in (41) we 

can modify the promoter into a hybrid promoter (45), where the repressors still mutually 

repress each other but are additionally up-regulated by their respective signaling molecules. 

To couple the dynamics across cells we consider the use of the homoserine lactone 

molecules used in (44). In this case lacI is up-regulated by C4-HSL (a signaling molecule 

produced by synthase enzyme CinI), which is in turn down-regulated by AraC. Similarly, 

araC is up-regulated by 3-OHC14-HSL (a signaling molecule produced by synthase enzyme 

RhlI), which is in turn down-regulated by LacI. Activation of response of promoters to 

signaling molecules is mediated by expression of cinR and rhlR, which encode transcription 

factors that respond to the signaling molecules to regulate their respective promoters. These 

are constitutively expressed inside the cell along with the expression of enzyme AiiA which 

degrades the signaling molecules (46). Proteins LacI and AraC are degraded enzymatically 

by the ClpXP protease via ssrA tags (47).

We model the system as follows

(12)

The states u and v correspond to concentrations of LacI and AraC. The states g and r are the 

signaling molecules C4-HSL and 3-OHC14-HSL that couple single cell dynamics or 

intracellular protein concentrations of u and v. These molecules are not directly regulated by 

the repressors but to simplify the model we assume that the production rate is proportional to 

that of CinI and RhlI, the enzymes involved in their production. That is, we assume 

saturating concentrations of the substrates involved and that synthesis of the signaling 

molecules, produced through a series of biochemical reactions, happen on a faster time-scale 

than gene regulation. The degradation constants γp and γs correspond to degradation rates 

mediated by enzymes ClpXP and AiiA, respectively. Furthermore, we add a factor δ to 

account for potential cross-talk and another factor l to account for basal expression of the 

signaling molecules. The basal expression is what is referred to as leaky gene expression. 

This accounts for the non-zero probability of transcription initiation occurring even when a 

repressive transcription factor is bound to the promoter site. Cross-talk is the undesirable 

behavior of signaling molecules up-regulating gene expression for a non-target protein.
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To simulate the system we consider domains on the scale of mm with zero flux boundary 

conditions. We again must consider initial conditions that are experimentally realistic. One 

method of controlling initial conditions is through the use of inducers. In our proposed 

design, we can use inducers IPTG and arabinose to deactivate Plac and PBAD promoter 

activity. The inducer molecules bind to the repressors, resulting in a protein conformational 

change that reduces the binding affinity of the repressor to its respective promoter site (48). 

Introducing both inducers simultaneously should remove cross regulation and allow both 

proteins to accumulate at similar rates. We find that it is important to establish an initial 

condition that results in competition for a tug-of-war to be initiated. Once the inducers are 

removed, each state begins to fight for majority in its immediate vicinity. This tug-of-war 

results in the emergence of patterns.

For our initial studies we choose the unbiased initial conditions

(13)

Both states are chosen to be uniform in space and at equal concentrations above the saddle 

point. Figure 6B shows simulations of system (12) at different time-points. We see that a 

high frequency pattern initially emerges but as time passes neighboring cells reach 

consensus and only a low frequency pattern is prolonged. We have seen in the one-

dimensional case that the low frequency patterns have the potential to linger depending on 

diffusion coefficients and length of the domain. It is worth noting from Fig. 6B that even the 

high frequency pattern persisted for hours.

Leakiness and crosstalk can improve patterning

We next investigate the effects of leaky gene expression and cross-talk in patterning. For 

this, we keep the deterministic initial conditions (13) to maintain a fair comparison. We run 

multiple simulations for various values of δ and l in system (12). We look at the range of 

protein expression and dominant modes present in the pattern as a function of time (Fig. 7). 

Figure 7A shows that the range of expression between the differentiated states gets smaller 

as cross talk increases. Eventually, patterning is no longer sustained. Figure 7B plots the 

average of the dominant modes found through application of a discrete cosine transform to 

the image at each time point. As cross talk increases, we find that higher frequency modes 

persist. This leads to more regular patterns with higher modes.

Next, we investigate leakiness. Figure 7C–D shows that patterns appear to be highly 

sensitive to the presence of leakiness. While leakiness is small enough to permit patterning, 

it does not significantly influence the range of expression in the differentiated states. 

However, like cross talk, too much leakiness breaks the pattern and this happens at 

extremely low thresholds. The result on dominant modes is less easily understood. A 

seemingly negligible amount of leakiness drastically increases the frequency of pattern 

observed; however, a further increase in leakiness reduces the frequency of the pattern again. 

As we continue to increase leakiness, we find that the dominant modes converge.
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With the results obtained from investigating the effects of cross talk and leakiness, we 

should expect to see improved patterning with the parameters δ = .01 and l = .0001nM/min. 

Figure 7E shows resulting simulations with δ = .01 and l = .0001nM/min. Indeed, we find 

that more complex patterns emerge.

Patterning is maintained with unequal diffusion coefficients

It is known that the transport rate of C4 is slightly faster than that of C14 due to its larger 

size (49) and so we verify the emergence of spontaneous patterns despite unequal diffusion 

coefficients. We also consider the following unbiased random initial conditions

(14)

where u* = v* is the saddle point of the bistable system. The term randn(σ, x, y) represents a 

pseudo-random number selected from a normal distribution with standard deviation σ = .

01nM and zero mean at point (x, y) in space. Such initial conditions can be achieved through 

an initial presence of inducers. Figure 8 shows simulations of this more realistic scenario. 

The difference in diffusion coefficients causes the patterns to dissipate more quickly. It is 

expected that LacI dominates, given that its respective signaling molecule C4 has a larger 

diffusion coefficient. However, the patterns can be clearly seen to persist for some non-

negligible amount of time. The wavelength of the patterns that emerge is dependent on the 

size of the domain. Recall from Fig. 4 that increasing the domain length moves the higher 

frequency modes closer to the stability boundary.

Pre-patterned spatial profiles persist despite unequal production rates

Finally, we look at the case where the system is pre-patterned through initial conditions. 

This simulates the effects of transient morphogens on long term patterns. Until now we have 

assumed that with our ability to modify promoter and ribosomal binding sites, we can tune 

expression rates to be equal (50, 51). To test the robustness of the patterns we consider 

unequal promoter strengths in addition to unequal diffusion coefficients. The pre-patterning 

is done through the following initial conditions

(15)

Figure 9 shows simulations for the pre-patterned system for various wavelengths. We 

initially see a refinement in the patterning occur over time and then the protein with the 

higher promoter strength begins to take over. The patterns persists for an extended amount of 

time despite asymmetry in the circuit. As predicted, the large wavelength pattern persists 

longer.
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Discussion

We demonstrated that spontaneous patterns can emerge in a two-component bistable system 

coupled by quorum sensing molecules in E. coli. Additionally, the existence of these 

solutions and their slow transients give way to persistence of pre-patterned spatial profiles 

relevant in developmental biology.

The model describing this bistable system is simple but sheds light on more complex 

networks found in nature. Although the non-homogeneous spatial patterns are unstable, 

investigation of the transients through analysis of a representative model showed that low 

frequency patterns have the potential to persist beyond any of the simulation times examined 

in this paper. Analysis of a discrete approximation gave insight into the instability of non-

homogeneous steady state profiles. We showed that low frequency profiles can be 

marginally close to being stable, which explains the prolonged transient patterns. This 

phenomena has been investigated in the field of phase transitions (37), where there are 

similar underlying dynamics, but has not been previously investigated for a toggle switch. 

Simulations of the toggle switch with quorum sensing molecules showed high frequency 

patterns did not persist as long but remained for hours just as predicted.

Furthermore, we are able to show that leaky gene expression and promiscuous promoter 

binding may be advantages to generating patterns within some threshold, after which, they 

aid to obliterate pattern formation. The role of leaky gene expression and promiscuous 

promoter binding in network response is an interesting topic to investigate further given its 

presence in gene regulation. In related work, Ishihara et al. demonstrated generation of 

spatial stripes from cross talk in a chain of feed-forward network motifs (52). Other results 

have demonstrated the positive role of noise in dynamics such as noise induced stability (53 

– 56) and noise induced patterning (57–59). However, there remains a lot of unexplored 

work on the role of small coupling through cross talk or basal gene expression in stability 

and patterning.

In summary, although much focus has been on permanent patterning, transient patterns from 

bistability may be sufficient in biological applications. For example, spatial regulation of eve 

stripes in Drosophila embryogenesis is dominated by weakly coupled toggle switches (?), 

where Bothma et al. (60) show that eve stripe 2 expression persists for only 15 min. This is 

sufficient to correctly achieve the next stage in development. Another example of the 

effectiveness of bistability in patterning with transient inducers is given in (61). The authors 

propose and investigate a detailed model of patterning of the dorsal surface of the 

Drosophila embryo based on experiments (62) and show that boundary refinement can be 

achieved with unrefined transient inducers. In this mechanism, mutual inhibition is not the 

source of bistability; however, much like our first example, resulting patterns are shown to 

depend on the history of morphogen exposure rather than to a concentration. Moreover, we 

showed that spatially-cued patterns are much more tolerant to asymmetric conditions. We 

only need to initially create contrasting biases towards one state or another to generate 

prolonged patterning with sharp boundaries.
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Methods

Simulations

Simulations for the 1D cases were done in Matlab using the PDE solver pdepe. The 2D 

simulations were done in Comsol using the time-dependent solver. The mesh settings were 

set to “Physics-controlled mesh” with an extra fine element size. The Backward 

differentiation formula (BDF) was chosen as the numerical ODE solver for the built in finite 

element method. The maximum and minimum orders of the BDF solver were set to 5 and 1, 

respectively. The initial step size was set to .0001 and the setting for steps taken by the 

solver was set to “Strict.” Data were saved for time points in increments of 10 min. The data 

were exported in csv files for image analysis in Matlab.

Calculation of average dominant modes

Using Matlab we apply the discrete cosine transform in two-dimensional space using the 

command dct2. Before applying the transform, we subtract the mean value of the matrix 

since we are interested in finding the dominant non-homogeneous modes. After applying the 

cosine transform we normalize each element in the output matrix by the “total energy” of the 

system in order to compare across different simulations. We define B = dct2(A) ∈ ℝN×M and 

normalize the coefficients by

(16)

We then set a threshold to find the dominant modes. Any coefficient with magnitude greater 

than one is considered sufficiently large. The corresponding maximum wavelength of the 

mode is calculated from

(17)

where L is the length of the domain. We then plot the average of all the calculated 

wavelengths present in the image.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Prolonged transient patterns emerging from unbiased initial conditions in a bistable 
system
(A) Schematic of transient boundaries observed in a two-state model in one-dimensional 

space. The boundary quickly forms and the tug-of-war persists for some time before one 

state wins over. (B) Schematic of transient patterning in a four-state model in two-

dimensional space resulting from a tug-of-war initiated at time t0. Patterns emerge after 

some time but high frequency modes quickly dissipate. Low frequency modes persist longer 

before one state wins over the space.
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Figure 2. A toggle switch with diffusion can generate prolonged boundary formations
(A)–(D): Simulations of system (1,4) with parameters D = .001mm2/min, γ = .5 min−1, α = 

10nM/min, A0 = 100nM, μ = 5mm−1, and σ = .5 nM. (A) Illustration of initial conditions. 

(B) Simulation with L = .5mm. (C) Spatial profiles of u and v at time t = 1000 min for L = .

5mm. (D) Simulations showing boundary formations are transient by extending the 

simulation time. (E)–(F): We study the effects of the domain length L and the standard 

deviation σ in the random initial conditions (4) on the time t = t* required to reach a 

homogeneous state. We run 50 simulations for each condition and calculate the average t*, 

μ(t*), and standard deviation σt* . (E) Plot of average time μ(t*) until spatial homogeneity is 

achieved. We normalize by 100 min and apply a logarithmic transformation. (F) Plot of 

corresponding coefficient of variation σt*/μ(t*).

Gomez and Arcak Page 17

ACS Synth Biol. Author manuscript; available in PMC 2017 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. A representative bistable system with diffusion shows the existence of non-homogenous 
solutions
(A) Steady state solutions of the PDE (1) with f(z) = –α tan−1(z), D = .1mm, and α = 2nM/
min. Each solution corresponds to zero flux boundary conditions (i.e. u′(0) = u′(L) = 0) and 

varying state boundary conditions u(0) = –u(L). The equilibrium points of the bistable 

system are indicated by Ŧu*. (B) Spatial profile corresponding to a half circle trip of the 

solution indicated in panel A with domain length L = 1.5mm. (C) Calculated domain length 

for each of the steady state solutions. The domain length approaches infinity as the boundary 

condition u(0) approaches Ŧu*.
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Figure 4. Stability analysis of the representative model (1,5) discretized in space shows patterns 
are transient
(A) Steady state spatial profile for the discretized system with D = .1mm2/min, Δx = .01mm, 

and α = 2nM/min. (B) Maximum eigenvalues of the linearized system about the steady state 

spatial profile in (A) for varying domain lengths. (C) Higher frequency steady state profiles. 

(D) Maximum eigenvalue for the higher frequency steady state profiles. Colors are matched 

to solutions in (C). We see that the instability associated with high frequency profiles is 

more severe. The three smallest eigenvalues have time constants 18 min, 594 min, and 3.56 

× 109 min.
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Figure 5. A toggle switch with diffusion can produce patterns in two-dimensional space
(A) Phase portrait of a bistable system illustrating evolution of the dynamics of systems 

uncoupled by diffusion. (B) Phase portrait of a bistable system illustrating evolution of the 

dynamics coupled by diffusion. Opposing forces from unbiased initial conditions prolong 

the tug-of-war. (C) Simulations of system (11) with initial conditions u(0, x, y) = v(0, x, y) = 

100nM. The parameter values are Du,v = .001mm2/min, αu,v = 10nM/min, and γu,v = .5 

min−1. We allow only numerical noise to break homogeneity.
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Figure 6. Simulations of a toggle switch design with quorum sensing molecules produces patterns
(A) Example construction of the toggle switch design with quorum sensing. The toggle 

switch is composed of two genes lacI and araC encoding repressors, which are up-regulated 

by their respective signaling molecules (C4-HSL and 3-OHC14-HSL) and down-regulated 

by each other. Additionally, each repressor down-regulates each other’s activators. In order 

to implement degradation, the repressors are tagged for enzymatic degradation and 

constitutive expression of aiiA produces an enzymes that degrades the signaling molecules. 

(B) Simulation of system (12) with initial conditions u(0, x, y) = v(0, x, y) = 100nM and no 

leakiness or cross talk. The parameter values are DC4 = DC14 = .001mm2/min, alacI = aaraC = 

10nM/min, a2 = 20nM/min, and γ = .5 min−1.
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Figure 7. Leakiness and cross talk can help improve transient patterns observed
All simulations where done with same parameters as Fig. 6 with initial conditions u(0, x, y) 

= v(0, x, y) = 100nM for fair comparison. (A) Range of expression as a function of time for 

various cross talk values. (B) Average of the dominant modes as a function of time for 

various cross talk values. (C) Range of expression as a function of time for various leakiness 

values. (D) Average of the dominant modes as a function of time for various leakiness 

values. (E) simulation with δ = .01 and l = .0001nM/min.
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Figure 8. Transient patterns emerge despite different diffusion constants and stocahstic initial 
conditions
Simulation of system (12) with DC14 = .001 mm2/min, DC4 = .0015 mm2/min, l = 0nM/min, 

δ = .01, and σ = .01nM.
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Figure 9. Longer wavelengths in patterning persist longer
Simulation of system (12) with DC14 = .001 mm2/min, DC4 = .0015 mm2/min, l = 0nM/min, 

δ = .01, σ = .01 nM, aaraC = 10.5nM/min. Additionally, the strength of the maximal 

production rate of the LacI promoter
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