当前位置: X-MOL 学术Int. J. Hydrogen Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Review: Enhancement of composite anode materials for low-temperature solid oxide fuels
International Journal of Hydrogen Energy ( IF 7.2 ) Pub Date : 2018-12-11 , DOI: 10.1016/j.ijhydene.2018.11.137
K.H. Ng , H.A. Rahman , M.R. Somalu

Solid oxide fuel cell (SOFC) technology is attractive for its high-energy efficiency and expanded fuel flexibility. It is also more environmentally benign than conventional power generation systems. Recently, increasing attention has been paid to intermediate-to-low-temperature solid oxide fuel cells, which operating at 400–800 °C. Reducing its operating temperature can render SOFC more competitive with other types of fuel cells and portable energy storage system (EES) over a range of applications (eg: transportation, portable, stationary) and more conducive for commercialization. The high-performance composite anode requirements for low operating temperature (400–600 °C) demand microstructural and chemical stability, high electronic conductivity, and good electrochemical performance. The current high-temperature anode, Ni-YSZ (nickel-yttria stabilized zirconia) is generally reported with high interfacial resistance at reduced temperatures. This review highlights several potential composite anode materials (Ni-based and Ni-free) that have been developed for low-temperature SOFCs within the past 10 years. This literature survey shows that most of these anodes still exhibit relatively high polarization resistance. Focus is also given on reducing polarization resistance to maintain the cell power density. In literature, common approaches that have been adopted to enhance the performance of anodes are (i) selecting high-performance electrolyte, (ii) exploiting nanopowder properties, and (iii) adding noble metals as electrocatalysts.



中文翻译:

评论:增强用于低温固体氧化物燃料的复合阳极材料

固体氧化物燃料电池(SOFC)技术以其高能效和扩展的燃料灵活性而具有吸引力。与传统的发电系统相比,它在环境方面也更加有益。最近,人们越来越关注在400-800°C下工作的中低温固体氧化物燃料电池。降低其工作温度可使SOFC在一系列应用(例如运输,便携式,固定式)中与其他类型的燃料电池和便携式储能系统(EES)更具竞争力,并且更有利于商业化。对于低工作温度(400–600°C)的高性能复合阳极的要求,其组织和化学稳定性,高电子电导率和良好的电化学性能。当前的高温阳极,据报道,Ni-YSZ(镍-钇稳定的氧化锆)在降低的温度下具有较高的界面电阻。这篇综述重点介绍了过去10年中为低温SOFC开发的几种潜在的复合阳极材料(Ni基和无Ni)。这项文献调查表明,大多数这些阳极仍表现出较高的极化电阻。还着重于降低极化电阻以维持电池功率密度。在文献中,已采用的增强阳极性能的常用方法是(i)选择高性能电解质,(ii)利用纳米粉末性能,以及(iii)添加贵金属作为电催化剂。这篇综述重点介绍了过去10年中为低温SOFC开发的几种潜在的复合阳极材料(Ni基和无Ni)。这项文献调查表明,大多数这些阳极仍表现出较高的极化电阻。还着重于降低极化电阻以维持电池功率密度。在文献中,已采用的增强阳极性能的常用方法是(i)选择高性能电解质,(ii)利用纳米粉末性能,以及(iii)添加贵金属作为电催化剂。这篇综述重点介绍了过去10年中为低温SOFC开发的几种潜在的复合阳极材料(Ni基和无Ni)。这项文献调查表明,大多数这些阳极仍表现出较高的极化电阻。还着重于降低极化电阻以维持电池功率密度。在文献中,已采用的增强阳极性能的常用方法是(i)选择高性能电解质,(ii)利用纳米粉末性能,以及(iii)添加贵金属作为电催化剂。还着重于降低极化电阻以维持电池功率密度。在文献中,已采用的增强阳极性能的常用方法是(i)选择高性能电解质,(ii)利用纳米粉末性能,以及(iii)添加贵金属作为电催化剂。还着重于降低极化电阻以维持电池功率密度。在文献中,已采用的增强阳极性能的常用方法是(i)选择高性能电解质,(ii)利用纳米粉末性能,以及(iii)添加贵金属作为电催化剂。

更新日期:2019-11-11
down
wechat
bug