当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Animals and the zoogeochemistry of the carbon cycle
Science ( IF 56.9 ) Pub Date : 2018-12-06 , DOI: 10.1126/science.aar3213
Oswald J. Schmitz 1 , Christopher C. Wilmers 2 , Shawn J. Leroux 3 , Christopher E. Doughty 4 , Trisha B. Atwood 5 , Mauro Galetti 6 , Andrew B. Davies 7 , Scott J. Goetz 4
Affiliation  

Animals count Flux across the carbon cycle is generally characterized by contributions from plants, microbes, and abiotic systems. Animals, however, move vast amounts of carbon, both through ecosystem webs and across the landscape. Schmitz et al. review the different contributions that animal populations make to carbon cycling and discuss approaches that allow for better monitoring of these contributions. Science, this issue p. eaar3213 BACKGROUND Modern advances in remote-sensing technology are providing unprecedented opportunities to accurately measure the global distribution of carbon held in biomass within ecosystems. Such highly spatially resolved measures of biomass carbon are intended to provide an accurate inventory of global carbon storage within ecosystems. They are also needed to test the accuracy of carbon cycle models that predict how global changes that alter biogeochemical functions—such as carbon assimilation via photosynthesis, carbon losses via plant and microbial respiration, and organic matter deposition in soils and sediments—will affect net ecosystem carbon uptake and storage. Emerging ecological theory predicts that wild animals stand to play an important role in mediating these biogeochemical processes. Furthermore, many animal species roam widely across landscapes, creating a spatial dynamism that could regulate spatial patterning of vegetation biomass and carbon uptake and soil carbon retention. But such zoogeochemical effects are not measured by current remote-sensing approaches nor are they factored into carbon cycle models. Studies are now providing new quantitative insights into how the abundance, diversity, and movement of animal species across landscapes influence the nature and magnitude of zoogeochemical affects. These insights inform how to account for animals in remote-sensing applications and in carbon cycle models to more accurately predict carbon exchange between ecosystems and the atmosphere in the face of global environmental change. ADVANCES Zoogeochemical effects have been measured using manipulative experiments that exclude or add focal wild animal species or along landscape gradients where animal abundances or diversity vary naturally. Our review of these studies, which cover a wide diversity of taxa (vertebrates and invertebrates and large- and small-bodied organisms) and ecosystems, reveals that animals can increase or decrease rates of biogeochemical processes, with a median change of 40% but ranging from 15 to 250% or more. Moreover, models that embody zoogeochemical effects reveal the potential for considerable under- or overestimates in ecosystem carbon budgets if animal effects are not considered. The key challenge, in light of these findings, is comprehensively accounting for spatially dynamic animal effects across landscapes. We review new developments in spatial ecosystem ecology that offer the kind of analytical guidance needed to link animal movement ecology to geospatial patterning in ecosystem carbon uptake and storage. Considerations of animal movement will require highly resolved spatially explicit understanding of landscape features, including topography, climate, and the spatial arrangement of habitat patches and habitat connectivity within and among ecosystems across landscapes. We elaborate on advances in remote-sensing capabilities that can deliver these critical data. We further review new geospatial statistical methods that, when combined with remote-sensing data and spatial ecosystem modeling, offer the means to comprehensively understand and predict how zoogeochemical-driven landscape processes regulate spatial patterns in carbon distribution. OUTLOOK There is growing interest to slow climate change by enlisting ecological processes to recapture atmospheric carbon and store it within ecosystems. Wild animal species are rarely considered as part of the solution. Instead, it is often held that managing habitat space to conserve wild animals will conflict with carbon storage. Our integrative review offers a pathway forward for deciding when and how conserving or managing a diversity of animal species could in fact enhance ecosystem carbon uptake and storage. Such understanding informs international climate and biodiversity initiatives such as those described by the United Nations Convention on Biological Diversity and national biodiversity strategies and climate action plans. All of these initiatives require better resolution of how biodiversity effects on ecosystem structure and biogeochemical functioning will become altered by global change. The myriad animal zoogeochemical effects on carbon cycling. Animals can mediate net carbon sequestration by plants (net primary productivity, NPP) by altering CO2 uptake into (black arrows) and from (red arrows) ecosystems. Herbivore grazing and tree browsing can alter the spatial distribution of plant biomass. Predators can modify herbivore impacts via predation and predator-avoidance behavior. Animal trampling compacts soils and alters soil temperatures by changing the amount of solar radiation reaching soil surfaces (yellow arrows). Animals also change the chemical quality of organic matter that enters the soil pool (orange arrows). CREDIT: NICOLE FULLER/SAYO-ART Predicting and managing the global carbon cycle requires scientific understanding of ecosystem processes that control carbon uptake and storage. It is generally assumed that carbon cycling is sufficiently characterized in terms of uptake and exchange between ecosystem plant and soil pools and the atmosphere. We show that animals also play an important role by mediating carbon exchange between ecosystems and the atmosphere, at times turning ecosystem carbon sources into sinks, or vice versa. Animals also move across landscapes, creating a dynamism that shapes landscape-scale variation in carbon exchange and storage. Predicting and measuring carbon cycling under such dynamism is an important scientific challenge. We explain how to link analyses of spatial ecosystem functioning, animal movement, and remote sensing of animal habitats with carbon dynamics across landscapes.

中文翻译:

动物和碳循环的动物地球化学

动物计数 碳循环中的通量通常以植物、微生物和非生物系统的贡献为特征。然而,动物通过生态系统网络和整个景观移动大量的碳。施密茨等人。回顾动物种群对碳循环的不同贡献,并讨论可以更好地监测这些贡献的方法。科学,这个问题 p。eaar3213 背景 遥感技术的现代进步为准确测量生态系统内生物量中碳的全球分布提供了前所未有的机会。这种高度空间解析的生物质碳测量旨在提供生态系统内全球碳储存的准确清单。他们还需要测试碳循环模型的准确性,这些模型预测改变生物地球化学功能的全球变化——例如通过光合作用进行的碳同化、通过植物和微生物呼吸产生的碳损失以及土壤和沉积物中的有机物质沉积——将如何影响净生态系统碳的吸收和储存。新兴生态理论预测,野生动物将在调节这些生物地球化学过程中发挥重要作用。此外,许多动物物种在景观中广泛漫游,创造了一种空间活力,可以调节植被生物量和碳吸收和土壤碳保留的空间格局。但是,当前的遥感方法无法测量这种动物地球化学效应,也没有将它们纳入碳循环模型中。研究现在提供了新的定量见解,以了解动物物种在不同景观中的丰度、多样性和运动如何影响动物地球化学影响的性质和程度。这些见解告诉我们如何在遥感应用和碳循环模型中解释动物,以更准确地预测面对全球环境变化时生态系统与大气之间的碳交换。进展 动物地球化学效应已使用排除或添加焦点野生动物物种或沿景观梯度的操纵实验进行测量,其中动物丰度或多样性自然变化。我们对这些研究的回顾,涵盖了广泛多样的分类群(脊椎动物和无脊椎动物以及大型和小型生物)和生态系统,揭示动物可以增加或减少生物地球化学过程的速率,中值变化为 40%,但范围从 15% 到 250% 或更多。此外,体现动物地球化学效应的模型显示,如果不考虑动物效应,生态系统碳预算可能会被严重低估或高估。鉴于这些发现,关键的挑战是全面考虑跨景观的空间动态动物效应。我们回顾了空间生态系统生态学的新发展,这些发展提供了将动物运动生态学与生态系统碳吸收和储存的地理空间模式联系起来所需的那种分析指导。考虑动物运动将需要对景观特征进行高度解析的空间明确理解,包括地形、气候、以及生态系统内部和生态系统之间的栖息地斑块的空间排列和栖息地连通性。我们详细阐述了可以提供这些关键数据的遥感能力的进步。我们进一步回顾了新的地理空间统计方法,这些方法与遥感数据和空间生态系统建模相结合,为全面理解和预测动物地球化学驱动的景观过程如何调节碳分布的空间格局提供了手段。展望 通过利用生态过程来重新捕获大气碳并将其储存在生态系统中来减缓气候变化的兴趣越来越大。野生动物物种很少被视为解决方案的一部分。相反,通常认为管理栖息地空间以保护野生动物会与碳储存相冲突。我们的综合审查为决定何时以及如何保护或管理动物物种多样性实际上可以增强生态系统碳的吸收和储存提供了一条前进的道路。这种理解为国际气候和生物多样性倡议提供信息,例如《联合国生物多样性公约》和国家生物多样性战略和气候行动计划所描述的那些倡议。所有这些举措都需要更好地解决全球变化如何改变生物多样性对生态系统结构和生物地球化学功能的影响。无数动物动物地球化学对碳循环的影响。动物可以通过改变进入(黑色箭头)和来自(红色箭头)生态系统的 CO2 吸收来调节植物的净碳固存(净初级生产力,NPP)。食草动物放牧和树木浏览可以改变植物生物量的空间分布。捕食者可以通过捕食和躲避捕食者的行为来改变食草动物的影响。动物践踏通过改变到达土壤表面的太阳辐射量(黄色箭头)来压实土壤并改变土壤温度。动物还会改变进入土壤池的有机物的化学质量(橙色箭头)。信用:NICOLE FULLER/SAYO-ART 预测和管理全球碳循环需要对控制碳吸收和储存的生态系统过程有科学的理解。一般认为,碳循环在生态系统植物、土壤池和大气之间的吸收和交换方面具有充分的特征。我们表明,动物也通过调解生态系统和大气之间的碳交换发挥重要作用,有时将生态系统碳源转化为碳汇,反之亦然。动物也会在景观中移动,创造一种活力,塑造碳交换和储存的景观尺度变化。在这种动态下预测和测量碳循环是一项重要的科学挑战。我们解释了如何将空间生态系统功能、动物运动和动物栖息地遥感的分析与跨景观的碳动态联系起来。在这种动态下预测和测量碳循环是一项重要的科学挑战。我们解释了如何将空间生态系统功能、动物运动和动物栖息地遥感的分析与跨景观的碳动态联系起来。在这种动态下预测和测量碳循环是一项重要的科学挑战。我们解释了如何将空间生态系统功能、动物运动和动物栖息地遥感的分析与跨景观的碳动态联系起来。
更新日期:2018-12-06
down
wechat
bug