当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrasound–Assisted Biodiesel Production Using Heterogeneous Base Catalyst and Mixed Non–edible Oils
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2018-12-04 , DOI: 10.1016/j.ultsonch.2018.11.021
Ritesh S. Malani , Vivek Shinde , Sumedh Ayachit , Arun Goyal , Vijayanand S. Moholkar

In the present study, the ultrasound–assisted biodiesel production from mixed feedstock of non–edible oils in presence of KI impregnated ZnO as a catalyst in batch reactor was investigated. The production was optimized by using two approaches (1) feedstock optimization and (2) process parameters optimization. Various non–edible oils at optimum volumetric ratio were blended and used as feedstock for transesterification reaction. Biodiesel yield was optimized by Box–Behnken statistical design. The maximum triglyceride conversion of 92.35 ± 1.08% was achieved at optimized conditions of catalyst loading = 7 % (w/w); alcohol/oil molar ratio = 11.68:1 and reaction temperature = 59°C. Transesterification process with mechanical agitation was used as base case for identification of role of sonication in the process. The transesterification process was analysed for kinetic behaviour using pseudo first order kinetics and Eley–Rideal mechanism based model. Overall activation energy of transesterification process for mechanically agitated and ultrasound–assisted systems was calculated as 135.4 and 123.65 kJ/mol, respectively. However, the sum of activation energies of three reaction steps of Eley–Rideal mechanism (64.69 kJ/mol and 46.63 kJ/mol, for mechanically agitated and ultrasound–assisted system, respectively) was much lower. This discrepancy is attributed to mass transfer limitations in the system, even in presence of sonication.



中文翻译:

使用非均相基础催化剂和混合非食用油的超声辅助生物柴油生产

在本研究中,研究了在间歇式反应器中,在KI浸渍的ZnO作为催化剂的情况下,由非食用油的混合原料超声辅助生物柴油的生产。通过使用两种方法(1)原料优化和(2)工艺参数优化来优化生产。将各种非食用油以最佳体积比混合,并用作酯交换反应的原料。通过Box–Behnken统计设计优化了生物柴油的产量。在最佳催化剂负载量= 7%(w / w)的条件下,最大甘油三酸酯转化率达到92.35±1.08%;醇/油摩尔比= 11.68∶1,反应温度= 59℃。以机械搅拌进行酯交换反应过程为基础,以鉴定超声过程中的超声作用。使用伪一级动力学和基于Eley-Rideal机理的模型对酯交换过程的动力学行为进行了分析。机械搅拌和超声辅助系统的酯交换过程的总活化能分别计算为135.4和123.65 kJ / mol。但是,Eley-Rideal机理的三个反应步骤(分别为机械搅拌和超声辅助系统的64.69 kJ / mol和46.63 kJ / mol)的活化能之和要低得多。这种差异归因于系统中的传质限制,即使存在超声处理也是如此。机械搅拌和超声辅助系统的酯交换过程的总活化能分别计算为135.4和123.65 kJ / mol。但是,Eley-Rideal机理的三个反应步骤(分别为机械搅拌和超声辅助系统的64.69 kJ / mol和46.63 kJ / mol)的活化能之和要低得多。这种差异归因于系统中的传质限制,即使存在超声处理也是如此。机械搅拌和超声辅助系统的酯交换过程的总活化能分别计算为135.4和123.65 kJ / mol。但是,Eley-Rideal机理的三个反应步骤(分别为机械搅拌和超声辅助系统的64.69 kJ / mol和46.63 kJ / mol)的活化能之和要低得多。这种差异归因于系统中的传质限制,即使存在超声处理也是如此。

更新日期:2018-12-04
down
wechat
bug