当前位置: X-MOL 学术Acta Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Three-dimensional (3D) printed scaffold and material selection for bone repair.
Acta Biomaterialia ( IF 9.7 ) Pub Date : 2018-11-24 , DOI: 10.1016/j.actbio.2018.11.039
Lei Zhang 1 , Guojing Yang 1 , Blake N Johnson 2 , Xiaofeng Jia 3
Affiliation  

Critical-sized bone defect repair remains a substantial challenge in clinical settings and requires bone grafts or bone substitute materials. However, existing biomaterials often do not meet the clinical requirements of structural support, osteoinductive property, and controllable biodegradability. To treat large-scale bone defects, the development of three-dimensional (3D) porous scaffolds has received considerable focus within bone engineering. A variety of biomaterials and manufacturing methods, including 3D printing, have emerged to fabricate patient-specific bioactive scaffolds that possess controlled micro-architectures for bridging bone defects in complex configurations. During the last decade, with the development of the 3D printing industry, a large number of tissue-engineered scaffolds have been created for preclinical and clinical applications using novel materials and innovative technologies. Thus, this review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects. Furthermore, it will elaborate on the current limitations and potential future prospects of 3D printing technology. STATEMENT OF SIGNIFICANCE: 3D printing has emerged as a critical fabrication process for bone engineering due to its ability to control bulk geometry and internal structure of tissue scaffolds. The advancement of bioprinting methods and compatible ink materials for bone engineering have been a major focus to develop optimal 3D scaffolds for bone defect repair. Achieving a successful balance of cellular function, cellular viability, and mechanical integrity under load-bearing conditions is critical. Hybridization of natural and synthetic polymer-based materials is a promising approach to create novel tissue engineered scaffolds that combines the advantages of both materials and meets various requirements, including biological activity, mechanical strength, easy fabrication and controllable degradation. 3D printing is linked to the future of bone grafts to create on-demand patient-specific scaffolds.

中文翻译:

三维(3D)打印支架和用于骨修复的材料选择。

临界尺寸的骨缺损修复在临床环境中仍然是一项重大挑战,需要骨移植物或骨替代材料。但是,现有的生物材料通常不能满足结构支持,骨诱导特性和可控制的生物降解性的临床要求。为了治疗大规模的骨缺损,三维(3D)多孔支架的开发已在骨工程领域引起了相当大的关注。已经出现了包括3D打印在内的多种生物材料和制造方法,以制造针对患者的生物活性支架,这些支架具有可控制的微结构,可以桥接复杂结构中的骨缺损。在过去的十年中,随着3D打印行业的发展,已经使用新型材料和创新技术为临床前和临床应用创建了大量组织工程支架。因此,本综述简要概述了通过3D打印技术制备的现有生物材料和组织工程支架的最新进展,重点是材料选择,支架设计优化以及它们在修复关键尺寸骨骼方面的临床前和临床应用缺陷。此外,它将详细介绍3D打印技术的当前局限性和潜在的未来前景。意义声明:3D打印已经成为骨骼工程的关键制造工艺,因为它具有控制组织支架的整体几何形状和内部结构的能力。生物打印方法和用于骨工程的兼容油墨材料的发展一直是开发用于骨缺损修复的最佳3D支架的主要重点。在承重条件下,细胞功能,细胞活力和机械完整性的成功平衡至关重要。天然和合成聚合物基材料的杂交是创建新型组织工程支架的一种有前途的方法,该支架结合了两种材料的优点并满足各种要求,包括生物活性,机械强度,易于制造和可控降解。3D打印与移植骨的未来联系在一起,以创建按需患者特定的支架。在承重条件下,细胞功能,细胞活力和机械完整性的成功平衡至关重要。天然和合成聚合物基材料的杂交是创建新型组织工程支架的一种有前途的方法,该支架结合了两种材料的优点并满足各种要求,包括生物活性,机械强度,易于制造和可控降解。3D打印与移植骨的未来联系在一起,以创建按需患者特定的支架。在承重条件下,细胞功能,细胞活力和机械完整性的成功平衡至关重要。天然和合成聚合物基材料的杂交是创建新型组织工程支架的一种有前途的方法,该支架结合了两种材料的优点并满足各种要求,包括生物活性,机械强度,易于制造和可控降解。3D打印与移植骨的未来联系在一起,以创建按需患者特定的支架。天然和合成聚合物基材料的杂交是创建新型组织工程支架的一种有前途的方法,该支架结合了两种材料的优点并满足各种要求,包括生物活性,机械强度,易于制造和可控降解。3D打印与移植骨的未来联系在一起,以创建按需患者特定的支架。天然和合成聚合物基材料的杂交是创建新型组织工程支架的一种有前途的方法,该支架结合了两种材料的优点并满足各种要求,包括生物活性,机械强度,易于制造和可控降解。3D打印与移植骨的未来联系在一起,以创建按需患者特定的支架。
更新日期:2018-11-26
down
wechat
bug