当前位置: X-MOL 学术J. Anal. Appl. Pyrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of Nitrogen-based Blowing Agents as an Additive in Pyrolysis of Cellulose
Journal of Analytical and Applied Pyrolysis ( IF 6 ) Pub Date : 2019-01-01 , DOI: 10.1016/j.jaap.2018.11.027
Evan Terrell , Manuel Garcia-Perez

Abstract Pyrolysis of cellulose mixed with blowing agent additives containing high nitrogen content has been investigated in this work. The additives used are dicyandiamide (DCD), 5-aminotetrazole (5AT) and 5-phenyl-1H-tetrazole (5PT), in concentrations of 0.25, 0.50, 1.0, 2.0 and 4.0% (weight). Blowing agents are of particular interest as a cellulose pyrolysis additive for two reasons: as a first case, if these additives and their decomposition products are chemically inert with respect to cellulose pyrolysis reactions, then they can serve to enhance the ejection of high-molecular weight aerosols from the liquid intermediate phase that is known to form during pyrolysis; as a second case, if these additives are not chemically inert, then the reactions between blowing agent decomposition products (e.g., NH3 and HN3) can provide a pathway by which nitrogen-doped carbonaceous char structures can be readily produced. Pyrolysis studies were carried out using thermogravimetric analysis and analytical Py-GC/MS of the pure compounds (DCD, 5AT, 5PT) and mixtures with cellulose, as well as proximate/ultimate analyses of the resulting chars from slow pyrolysis. Experiments showed that there is a reactive interaction between the additives and cellulose during pyrolysis, leading to greater char yields. Analysis of slow pyrolysis chars showed that DCD is promising for producing biochar with higher nitrogen content. This was attributed to the evolution of ammonia from DCD and due to its thermal decomposition occurring in a temperature range coincident with that of cellulose pyrolysis reactions.

中文翻译:

氮基发泡剂作为添加剂在纤维素热解中的应用

摘要 本工作研究了与含高氮含量的发泡剂添加剂混合的纤维素的热解。使用的添加剂是双氰胺 (DCD)、5-氨基四唑 (5AT) 和 5-苯基-1H-四唑 (5PT),浓度为 0.25、0.50、1.0、2.0 和 4.0%(重量)。发泡剂作为纤维素热解添加剂特别受关注,原因有二:首先,如果这些添加剂及其分解产物对纤维素热解反应呈化学惰性,则它们可用于增强高分子量物质的喷射来自已知在热解过程中形成的液体中间相的气溶胶;作为第二种情况,如果这些添加剂不是化学惰性的,那么发泡剂分解产物(例如,NH3 和 HN3) 可以提供一种途径,通过该途径可以很容易地产生掺氮碳质炭结构。热解研究是使用纯化合物(DCD、5AT、5PT)和与纤维素的混合物的热重分析和分析 Py-GC/MS 进行的,以及对缓慢热解所得炭的近似/最终分析进行。实验表明,在热解过程中,添加剂和纤维素之间存在反应性相互作用,从而导致更高的炭产率。对慢热解炭的分析表明,DCD 有望用于生产含氮量较高的生物炭。这归因于从 DCD 释放出氨,并且由于其发生在与纤维素热解反应一致的温度范围内的热分解。热解研究是使用纯化合物(DCD、5AT、5PT)和与纤维素的混合物的热重分析和分析 Py-GC/MS 进行的,以及对缓慢热解所得炭的近似/最终分析进行。实验表明,在热解过程中,添加剂和纤维素之间存在反应性相互作用,从而导致更高的炭产率。对慢热解炭的分析表明,DCD 有望用于生产含氮量较高的生物炭。这归因于从 DCD 释放出氨,并且由于其发生在与纤维素热解反应一致的温度范围内的热分解。热解研究是使用纯化合物(DCD、5AT、5PT)和与纤维素的混合物的热重分析和分析 Py-GC/MS 进行的,以及对缓慢热解所得炭的近似/最终分析进行。实验表明,在热解过程中,添加剂和纤维素之间存在反应性相互作用,从而导致更高的炭产率。对慢热解炭的分析表明,DCD 有望用于生产含氮量较高的生物炭。这归因于从 DCD 释放出氨,并且由于其发生在与纤维素热解反应一致的温度范围内的热分解。以及对缓慢热解产生的炭的近似/最终分析。实验表明,在热解过程中,添加剂和纤维素之间存在反应性相互作用,从而导致更高的炭产率。对慢热解炭的分析表明,DCD 有望用于生产含氮量较高的生物炭。这归因于从 DCD 释放出氨,并且由于其发生在与纤维素热解反应一致的温度范围内的热分解。以及对缓慢热解产生的炭的近似/最终分析。实验表明,在热解过程中,添加剂和纤维素之间存在反应性相互作用,从而导致更高的炭产率。对慢热解炭的分析表明,DCD 有望用于生产含氮量较高的生物炭。这归因于从 DCD 释放出氨,并且由于其发生在与纤维素热解反应一致的温度范围内的热分解。
更新日期:2019-01-01
down
wechat
bug