当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2018-11-13 , DOI: 10.1016/j.msea.2018.11.054
V.T. Nguyen , M. Qian , Z. Shi , T. Song , L. Huang , J. Zou

New non-equiatomic Ti(25+x)-Zr25-Nb25-Ta(25-x) (x = 0, 5, 10, 15, 20, in at%) medium entropy alloys (MEAs) have been designed using the atomic mismatch approach and fabricated through a conventional arc-melting process. These novel MEAs were derived from a recently developed equiatomic Ti-Zr-Nb-Ta MEA by gradually replacing its Ta content with Ti. Each non-equiatomic MEA solidified as a single solid-solution phase, which was characterised in detail and compared with Pandat™ simulation and empirical rules. Systematic tensile mechanical property data revealed the existence of a brittle-to-ductile transition for Ti-Zr-Nb-Ta MEAs, i.e., when 15 at% of Ta in the equiatomic Ti25-Zr25-Nb25-Ta25 MEA was replaced by Ti to become a Ti40-Zr25-Nb25-Ta10 MEA. The transition occurs corresponding to a small reduction in atomic mismatch from 4.72% to 4.65% but a signficant drop in nanoindentation hardness from 4.2 GPa to 3.5 GPa. In particular, both the as-cast Ti40-Zr25-Nb25-Ta10 and Ti45-Zr25-Nb25-Ta5 MEAs exhibited excellent tensile strain to fracture (>18%) and tensile strength (>900 MPa) with much reduced density compared to the brittle Ti25-Zr25-Nb25-Ta25 MEA. They are both among a very small number of strong and ductile (tensile strain >15%) HEAs reported to date. Their tensile mechanical properties can be further tuned by adjusting the atomic mismatch of the resulting single solid-solution phase in conjunction with the improved understanding of the microstructures of these MEAs.



中文翻译:

使用原子失配方法的强韧和延展性(拉伸)Ti-Zr-Nb-Ta中熵合金(MEA)的成分设计

已经使用以下方法设计了新的非等原子Ti (25 + x) -Zr 25 -Nb 25 -Ta (25-x)(x = 0、5、10、15、20 ,at%)原子失配方法,并通过传统的电弧熔化工艺制造。这些新颖的MEA源自最近开发的等原子Ti-Zr-Nb-Ta MEA,通过逐步将其Ta含量替换为Ti来实现。每个非等原子MEA都固化为单个固溶体相,对其进行了详细表征,并与Pandat™模拟和经验规则进行了比较。系统的拉伸力学性能数据表明,Ti-Zr-Nb-Ta MEAs存在脆性-延性转变,即当等原子Ti 25 -Zr 25 -Nb中Ta的含量为15 at%时用Ti代替25 -Ta 25 MEA成为Ti 40 -Zr 25 -Nb 25 -Ta 10 MEA。发生转变的原因是原子错配从4.72%降低到4.65%,但纳米压痕硬度从4.2 GPa显着下降到3.5 GPa。尤其是铸态的Ti 40 -Zr 25 -Nb 25 -Ta 10和Ti 45 -Zr 25 -Nb 25 -Ta 5 MEA均表现出优异的断裂拉伸应变(> 18%)和拉伸强度(> 900 MPa) )与脆性Ti 25 -Zr相比密度大大降低25 -Nb 25 -Ta 25 MEA。迄今为止,它们都属于极少数的强而有延展性(拉伸应变> 15%)的HEA。通过调节所得单固溶相的原子错配以及对这些MEA微观结构的更好理解,可以进一步调节其拉伸机械性能。

更新日期:2018-11-13
down
wechat
bug