当前位置: X-MOL 学术Ceram. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Iron molybdate and manganese dioxide microrods as a hybrid structure for high-performance supercapacitor applications
Ceramics International ( IF 5.2 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.ceramint.2018.11.078
Aqib Muzaffar , M. Basheer Ahamed

Abstract FeMoO4@MnO2 microrod binary hybrid structure is synthesized by a simple two-step hydrothermal method. The phase formation and morphology of FeMoO4@MnO2 were analyzed using X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM) respectively. High-resolution transmission electron microscopy (HRTEM) analysis of the sample confirms its microrod morphology and polycrystalline nature. The electrochemical measurements revealed the supercapacitive behavior by encompassing both double layered capacitance as well as pseudocapacitance at lower and higher scan rates respectively. A symmetric fabrication method was employed using FeMoO4 @MnO2 as both negative and positive electrode for electrochemical analysis. The symmetric supercapacitor cell yields a specific capacitance of 839.29 F g−1 at a current density of 1 A g−1 in addition to higher cyclic stability and performance. The sandwiched symmetric supercapacitor device displays a high specific energy density of 56.95 W h kg−1 at a power density of 418.46 W kg−1. In addition to that, the device showed a promising capacity retention of 87% with an efficiency 80% of after 10,000 cycles. The electrochemical results show that FeMoO4@MnO2 could present itself as a promising electrode material for the next generation supercapacitors applications.

中文翻译:

钼酸铁和二氧化锰微棒作为高性能超级电容器应用的混合结构

摘要 通过简单的两步水热法合成了FeMoO4@MnO2微棒二元杂化结构。分别使用 X 射线衍射 (XRD) 图案和扫描电子显微镜 (SEM) 分析 FeMoO4@MnO2 的相形成和形貌。样品的高分辨率透射电子显微镜 (HRTEM) 分析证实了其微棒形态和多晶性质。电化学测量分别通过在较低和较高扫描速率下包含双层电容和赝电容来揭示超级电容行为。采用对称制造方法,使用 FeMoO4 @MnO2 作为电化学分析的负极和正极。对称超级电容器的比电容为 839。29 F g-1 在 1 A g-1 的电流密度下,除了更高的循环稳定性和性能。夹层对称超级电容器装置在 418.46 W kg-1 的功率密度下显示出 56.95 W h kg-1 的高比能量密度。除此之外,该设备在 10,000 次循环后显示出 87% 的容量保持率和 80% 的效率。电化学结果表明,FeMoO4@MnO2 可以作为下一代超级电容器应用的有前途的电极材料。
更新日期:2019-02-01
down
wechat
bug