当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of a low density Fe-Mn-Al-C steel with high strength-high ductility combination involving TRIP effect and dynamic carbon partitioning
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2018-11-09 , DOI: 10.1016/j.msea.2018.11.044
J. Kang , Y.J. Li , X.H. Wang , H.S. Wang , G. Yuan , R.D.K. Misra , G.D. Wang

A novel process involving hot rolling and air cooling followed by dynamic carbon partitioning is proposed to design a low density Fe-Mn-Al-C steel with high strength-high ductility combination. The low density alloy 0.25C-3Mn-2Al (wt%) steel was designed to control the phase transformation and achieve dynamic carbon partitioning, thereby obtaining bainite/martensite matrix embedded with nano-sized retained austenite (RA). The effect of different air-cooling finish temperatures on the microstructures and mechanical properties is elucidated in the study described here. Multi-phase microstructures of ferrite, martensite/bainite and RA were obtained during air-cooling in the temperature range of 360–510 °C. It was interesting that bainite matrix was obtained at finish temperature of 400 °C, while the martensite matrix including lath and twin martensite was obtained on air cooling temperature to 510 °C. The twin martensite resulted in higher tensile strength of ~1096 MPa in sample air cooled to 510 °C. The RA in samples subjected to dynamic partitioning was high, significantly approaching 27.3%. Additionally, RA was characterized into two types, film and blocky. A large amount of blocky RA in sample air cooled to 510 °C led to 21.4% transformed RA during uniform deformation. Consequently, excellent combination of high tensile strength of ~1096 MPa and uniform elongation of ~16% was attained in sample air cooled to 510 °C. The study simplifies the existing processes and breaks the constraint for quenching and partitioning treatment limited by quenching temperature below Ms. It has important implications for developing the new generation hot rolled high strength steels.



中文翻译:

具有TRIP效应和动态碳分配的高强度高延展性低密度Fe-Mn-Al-C钢的设计

提出了一种通过热轧和空冷再进行动态碳分配的新工艺,以设计具有高强度-高延性组合的低密度Fe-Mn-Al-C钢。设计低密度合金0.25C-3Mn-2Al(wt%)钢,以控制相变并实现动态碳分配,从而获得嵌入纳米级残余奥氏体(RA)的贝氏体/马氏体基体。此处描述的研究阐明了不同的空冷完成温度对显微组织和机械性能的影响。在温度范围为360–510°C的空气冷却过程中,获得了铁素体,马氏体/贝氏体和RA的多相组织。有趣的是,贝氏体基体是在400°C的最终温度下获得的,在冷却至510℃的空气中获得了包括板条和双马氏体的马氏体基体。双马氏体在冷却至510°C的样品空气中产生了约1096 MPa的更高拉伸强度。经过动态分配的样品中的RA很高,显着接近27.3%。此外,RA的特征分为薄膜型和块状两种。在均匀变形过程中,冷却至510°C的样品空气中大量的块状RA导致转化RA的转化率为21.4%。因此,在冷却至510°C的样品空气中,获得了〜1096 MPa的高拉伸强度和〜16%的均匀伸长率的出色组合。该研究简化了现有工艺,并打破了淬火温度低于M的局限性,进行淬火和分配处理的约束条件。双马氏体在冷却至510°C的样品空气中产生了约1096 MPa的更高拉伸强度。经过动态分配的样品中的RA很高,显着接近27.3%。此外,RA的特征分为薄膜型和块状两种。在均匀变形过程中,冷却到510°C的样品空气中大量的块状RA导致21.4%的转化RA。因此,在冷却至510°C的样品空气中,获得了〜1096 MPa的高拉伸强度和〜16%的均匀伸长率的出色组合。该研究简化了现有工艺,并打破了淬火温度低于M的局限性,进行淬火和分配处理的约束条件。双马氏体在冷却至510°C的样品空气中产生了约1096 MPa的更高拉伸强度。经过动态分配的样品中的RA很高,显着接近27.3%。此外,RA的特征分为薄膜型和块状两种。在均匀变形过程中,冷却至510°C的样品空气中大量的块状RA导致转化RA的转化率为21.4%。因此,在冷却至510°C的样品空气中,获得了〜1096 MPa的高拉伸强度和〜16%的均匀伸长率的出色组合。该研究简化了现有工艺,并打破了淬火温度低于M的局限性,进行淬火和分配处理的约束条件。3%。此外,RA的特征分为薄膜型和块状两种。在均匀变形过程中,冷却至510°C的样品空气中大量的块状RA导致转化RA的转化率为21.4%。因此,在冷却至510°C的样品空气中,获得了〜1096 MPa的高拉伸强度和〜16%的均匀伸长率的出色组合。该研究简化了现有工艺,并打破了淬火温度低于M的局限性,进行淬火和分配处理的约束条件。3%。此外,RA的特征分为薄膜型和块状两种。在均匀变形过程中,冷却到510°C的样品空气中大量的块状RA导致转化RA的转化率为21.4%。因此,在冷却至510°C的样品空气中,获得了〜1096 MPa的高拉伸强度和〜16%的均匀伸长率的出色组合。该研究简化了现有工艺,并打破了淬火温度低于M的淬火和分配处理的限制。s。这对开发新一代热轧高强度钢具有重要意义。

更新日期:2018-11-09
down
wechat
bug