当前位置: X-MOL 学术ACS Synth. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extracellular Electron Transfer by Shewanella oneidensis Controls Palladium Nanoparticle Phenotype
ACS Synthetic Biology ( IF 4.7 ) Pub Date : 2018-11-05 00:00:00 , DOI: 10.1021/acssynbio.8b00218
Christopher M. Dundas , Austin J. Graham , Dwight K. Romanovicz , Benjamin K. Keitz

The relative scarcity of well-defined genetic and metabolic linkages to material properties impedes biological production of inorganic materials. The physiology of electroactive bacteria is intimately tied to inorganic transformations, which makes genetically tractable and well-studied electrogens, such as Shewanella oneidensis, attractive hosts for material synthesis. Notably, this species is capable of reducing a variety of transition-metal ions into functional nanoparticles, but exact mechanisms of nanoparticle biosynthesis remain ill-defined. We report two key factors of extracellular electron transfer by S. oneidensis, the outer membrane cytochrome, MtrC, and soluble redox shuttles (flavins), that affect Pd nanoparticle formation. Changes in the expression and availability of these electron transfer components drastically modulated particle synthesis rate and phenotype, including their structure and cellular localization. These relationships may serve as the basis for biologically tailoring Pd nanoparticle catalysts and could potentially be used to direct the biogenesis of other metal nanomaterials.

中文翻译:

沙瓦氏假单胞菌的细胞外电子转移控制钯纳米粒子表型。

明确定义的遗传和代谢联系到材料特性的相对稀缺阻碍了无机材料的生物生产。电活性细菌的生理学与无机转化密切相关,无机转化使遗传上易处理且经过精心研究的电子(例如希瓦氏菌)成为材料合成的诱人宿主。值得注意的是,该物种能够将多种过渡金属离子还原为功能性纳米粒子,但是纳米粒子生物合成的确切机制仍然不确定。我们报告了沙门氏菌细胞外电子转移的两个关键因素,即影响Pd纳米颗粒形成的外膜细胞色素,MtrC和可溶性氧化还原穿梭(黄素)。这些电子转移组分的表达和可用性的变化极大地调节了颗粒的合成速率和表型,包括它们的结构和细胞定位。这些关系可以用作生物学上修饰钯纳米颗粒催化剂的基础,并且可以潜在地用于指导其他金属纳米材料的生物发生。
更新日期:2018-11-05
down
wechat
bug