当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2018-11-06 00:00:00 , DOI: 10.1021/acs.accounts.8b00451
Jayoung Kim 1 , Itthipon Jeerapan 1 , Juliane R. Sempionatto 1 , Abbas Barfidokht 1 , Rupesh K. Mishra 1 , Alan S. Campbell 1 , Lee J. Hubble 1, 2 , Joseph Wang 1
Affiliation  

In this Account, we detail recent progress in wearable bioelectronic devices and discuss the future challenges and prospects of on-body noninvasive bioelectronic systems. Bioelectronics is a fast-growing interdisciplinary research field that involves interfacing biomaterials with electronics, covering an array of biodevices, encompassing biofuel cells, biosensors, ingestibles, and implantables. In particular, enzyme-based bioelectronics, built on diverse biocatalytic reactions, offers distinct advantages and represents a centerpiece of wearable biodevices. Such wearable bioelectronic devices predominately rely on oxidoreductase enzymes and have already demonstrated considerable promise for on-body applications ranging from highly selective noninvasive biomarker monitoring to epidermal energy harvesting. These systems can thus greatly increase the analytical capability of wearable devices from the ubiquitous monitoring of mobility and vital signs, toward the noninvasive analysis of important chemical biomarkers. Wearable enzyme electrodes offer exciting opportunities to a variety of areas, spanning from healthcare, sport, to the environment or defense. These include real-time noninvasive detection of biomarkers in biofluids (such as sweat, saliva, interstitial fluid and tears), and the monitoring of environmental pollutants and security threats in the immediate surrounding of the wearer. Furthermore, the interface of enzymes with conducting flexible electrode materials can be exploited for developing biofuel cells, which rely on the bioelectrocatalytic oxidation of biological fuels, such as lactate or glucose, for energy harvesting applications. Crucial for such successful application of enzymatic bioelectronics is deep knowledge of enzyme electron-transfer kinetics, enzyme stability, and enzyme immobilization strategies. Such understanding is critical for establishing efficient electrical contacting between the redox enzymes and the conducting electrode supports, which is of fundamental interest for the development of robust and efficient bioelectronic platforms. Furthermore, stretchable and flexible bioelectronic platforms, with mechanical properties similar to those of biological tissues, are essential for handling the rigors of on-body operation. As such, special attention must be given to changes in the behavior of enzymes due to the uncontrolled conditions of on-body operation (including diverse outdoor activities and different biofluids), for maintaining the attractive performance that these bioelectronics devices display in controlled laboratory settings. Therefore, a focus of this Account is on interfacing biocatalytic layers onto wearable electronic devices for creating efficient and stable on-body electrochemical biosensors and biofuel cells. With proper attention to key challenges and by leveraging the advantages of biocatalysis, electrochemistry, and flexible electronics, wearable bioelectronic devices could have a tremendous impact on diverse biomedical, fitness, and defense fields.

中文翻译:

可穿戴生物电子产品:基于酶的穿戴式电子设备

在此帐户中,我们详细介绍了可穿戴生物电子设备的最新进展,并讨论了人体无创生物电子系统的未来挑战和前景。生物电子学是一个快速发展的跨学科研究领域,涉及生物材料与电子设备的接口连接,涵盖了一系列生物设备,包括生物燃料电池,生物传感器,可摄取物和可植入物。尤其是,基于多种生物催化反应的基于酶的生物电子产品具有明显的优势,是可穿戴生物设备的核心。这样的可穿戴生物电子设备主要依赖于氧化还原酶,并且已经显示出从高选择性非侵入性生物标志物监测到表皮能量收集等人体应用的可观前景。因此,从无处不在的活动性和生命体征监测,到重要化学生物标记物的非侵入性分析,这些系统都可以大大提高可穿戴设备的分析能力。可穿戴酶电极为医疗保健,运动,环境或国防等各个领域提供了令人兴奋的机会。这些措施包括实时无创检测生物流体中的生物标记物(例如汗液,唾液,间质液和眼泪),以及在穿戴者周围环境中监测环境污染物和安全威胁。此外,可以利用酶与导电柔性电极材料的界面来开发生物燃料电池,该生物燃料电池依赖于诸如乳酸或葡萄糖之类的生物燃料的生物电催化氧化来进行能量收集应用。酶生物电子学如此成功应用的关键是对酶电子转移动力学,酶稳定性和酶固定化策略的深入了解。这种理解对于在氧化还原酶和导电电极载体之间建立有效的电接触至关重要,这对于开发健壮和高效的生物电子平台至关重要。此外,具有可拉伸且灵活的生物电子平台,其机械性质类似于生物组织的机械性质,对于处理人体操作的严苛条件至关重要。因此,由于身体操作不受控制的条件(包括各种户外活动和不同的生物流体),必须特别注意酶的行为变化,用于保持这些生物电子设备在受控实验室设置中显示的诱人性能。因此,该帐户的重点是将生物催化层连接到可穿戴电子设备上,以创建高效,稳定的体内电化学生物传感器和生物燃料电池。适当注意关键挑战并利用生物催化,电化学和柔性电子产品的优势,可穿戴生物电子设备可能会对各种生物医学,健身和国防领域产生巨大影响。
更新日期:2018-11-06
down
wechat
bug