当前位置: X-MOL 学术Food Hydrocoll. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract
Food Hydrocolloids ( IF 10.7 ) Pub Date : 2019-04-01 , DOI: 10.1016/j.foodhyd.2018.10.058
Tomy J. Gutiérrez , Luis A. Toro-Márquez , Danila Merino , Julieta R. Mendieta

Abstract Bionanocomposite films processed by twin screw extrusion followed by thermo molding were prepared from corn starch (Zea mays) and pH-sensitive nano-clays packaged with Jamaica flower (Hibiscus sabdariffa) extract (JFE). The hydrogen (H)-bonding interactions of the materials obtained were evaluated by ATR/FTIR spectroscopy, and their influence on the physicochemical and surface properties of the materials was analyzed. The degree of biodegradability and compostability of the films was also recorded. This latter was analyzed in terms of the ecotoxicity of the films using the variations in the growth of the primary root of lettuce (Lactuca sativa) seedlings exposed to three concentrations (1, 10 and 100 μg/mL) of the powdered films as a biomarker. The addition of the JFE-containing nano-fillers strengthened the H-bonding interactions with the thermoplastic starch (TPS) matrix, and these interactions were more efficient when there were fewer steric impediments between the JFE and the TPS. Additionally, stronger H-bonding interactions produced more hydrophilic surfaces, with greater surface energy and rougher surface morphology. All the films tested were biodegradable. Our research group had previously encountered high cytotoxicity in one of the evaluated nano-clay systems, and in this study, we confirmed that this same nano-clay system produced a non-compostable material at high concentrations (100 μg/mL), as measured by its effect on lettuce seedlings. This confirms that biodegradable materials are not necessarily compostable.

中文翻译:

由玉米淀粉和纳米填料制备的生物纳米复合膜的氢键相互作用和可堆肥性,添加和不添加牙买加花提取物

摘要 以玉米淀粉(Zea mays)和含牙买加花(Hibiscus sabdariffa)提取物(JFE)的pH敏感纳米粘土为原料,通过双螺杆挤出和热成型制备了生物纳米复合薄膜。通过ATR / FTIR光谱评估所得材料的氢(H)键相互作用,并分析它们对材料物理化学和表面性质的影响。还记录了薄膜的生物降解性和可堆肥性程度。使用暴露于三种浓度(1、10 和 100 μg/mL)粉末薄膜作为生物标志物的生菜(Lactuca sativa)幼苗主根生长的变化,根据薄膜的生态毒性对后者进行分析. 添加含 JFE 的纳米填料加强了与热塑性淀粉 (TPS) 基质的 H 键相互作用,当 JFE 和 TPS 之间的空间位阻较少时,这些相互作用更有效。此外,更强的氢键相互作用产生更亲水的表面,具有更大的表面能和更粗糙的表面形态。所有测试的薄膜都是可生物降解的。我们的研究小组之前曾在其中一个评估的纳米粘土系统中遇到过高细胞毒性,在本研究中,我们证实,同样的纳米粘土系统产生了高浓度 (100 μg/mL) 的不可堆肥材料,如测量通过其对生菜幼苗的影响。这证实了可生物降解的材料不一定是可堆肥的。当 JFE 和 TPS 之间的空间障碍较少时,这些相互作用会更有效。此外,更强的氢键相互作用产生更亲水的表面,具有更大的表面能和更粗糙的表面形态。所有测试的薄膜都是可生物降解的。我们的研究小组之前曾在其中一个评估的纳米粘土系统中遇到过高细胞毒性,在本研究中,我们证实,同样的纳米粘土系统产生了高浓度 (100 μg/mL) 的不可堆肥材料,如测量通过其对生菜幼苗的影响。这证实了可生物降解的材料不一定是可堆肥的。当 JFE 和 TPS 之间的空间障碍较少时,这些相互作用会更有效。此外,更强的氢键相互作用产生更亲水的表面,具有更大的表面能和更粗糙的表面形态。所有测试的薄膜都是可生物降解的。我们的研究小组之前曾在其中一个评估的纳米粘土系统中遇到过高细胞毒性,在本研究中,我们证实,同样的纳米粘土系统产生了高浓度 (100 μg/mL) 的不可堆肥材料,如测量通过其对生菜幼苗的影响。这证实了可生物降解的材料不一定是可堆肥的。具有更大的表面能和更粗糙的表面形态。所有测试的薄膜都是可生物降解的。我们的研究小组之前曾在其中一个评估的纳米粘土系统中遇到过高细胞毒性,在本研究中,我们证实,同样的纳米粘土系统产生了高浓度 (100 μg/mL) 的不可堆肥材料,如测量通过其对生菜幼苗的影响。这证实了可生物降解的材料不一定是可堆肥的。具有更大的表面能和更粗糙的表面形态。所有测试的薄膜都是可生物降解的。我们的研究小组之前曾在其中一个评估的纳米粘土系统中遇到过高细胞毒性,在本研究中,我们证实,同样的纳米粘土系统产生了高浓度 (100 μg/mL) 的不可堆肥材料,如测量通过其对生菜幼苗的影响。这证实了可生物降解的材料不一定是可堆肥的。
更新日期:2019-04-01
down
wechat
bug