当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MoS2 nanosheets with expanded interlayer spacing for enhanced sodium storage†
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2018-10-25 00:00:00 , DOI: 10.1039/c8qi00969d
Huishuang Dong 1, 2, 3, 4, 5 , Yang Xu 6, 7, 8, 9, 10 , Chenglin Zhang 6, 7, 8, 9, 10 , Yuhan Wu 6, 7, 8, 9, 10 , Min Zhou 6, 7, 8, 9, 10 , Long Liu 6, 7, 8, 9, 10 , Yulian Dong 1, 2, 3, 4, 5 , Qun Fu 1, 2, 3, 4, 5 , Minghong Wu 1, 2, 3, 4, 5 , Yong Lei 1, 2, 3, 4, 5
Affiliation  

Sodium-ion battery technology is a promising alternative to lithium-ion batteries for low-cost and large-scale energy storage applications. The larger size of the Na-ion relative to the Li-ion imposes kinetic limitations and often results in sluggish Na-ion diffusion. It is a great necessity to explore prominent structural features of materials to overcome the limitations and improve the diffusion. Layered MoS2 has an ideal two-dimensional diffusion pathway because of the weak van der Waals interaction between the layers. However, the limited gallery height of 0.3 nm is insufficient to achieve fast Na-ion diffusion. A facile hydrothermal route at medium-ranged temperatures is reported in this work to obtain interlayer expanded MoS2 nanosheets. The interlayer spacing is greatly expanded to 1 nm and facilitates Na-ion insertion and extraction in the van der Waals gaps. The nanosheet morphology shortens the Na-ion diffusion distance from the lateral side. The interlayer expanded MoS2 nanosheets are used as sodium-ion battery anodes in the voltage window of 0.5–2.8 V, where intercalation reaction contributes to Na storage and the layered structure can be preserved. The nanosheets exhibit a high cycling stability by retaining 92% of the initial charge capacity after 100 cycles and a great rate capability of 43 mA h g−1 at 2 A g−1. Kinetics study reveals a significant alleviation of diffusional limitation, verifying the improved Na-ion diffusion and enhanced Na storage. The presented work explores the utilization of the van der Waals gaps to store ions and sheds light on designing two-dimensional materials in other energy systems.

中文翻译:

MoS 2纳米片具有增加的层间间距,可增强钠的储藏能力

对于低成本和大规模储能应用,钠离子电池技术是锂离子电池的有前途的替代方法。Na离子相对于Li离子的较大尺寸强加了动力学限制,通常会导致Na离子扩散缓慢。探索材料的突出结构特征以克服局限性并改善扩散是非常必要的。层状MoS 2具有理想的二维扩散途径,这是因为层之间的范德华相互作用较弱。但是,有限的0.3 nm画廊高度不足以实现快速的Na离子扩散。在这项工作中报道了一种在中等温度下的简便热液路线,以获得层间膨胀的MoS 2纳米片。层间间距大大扩展到1 nm,并促进了范德华间隙中Na离子的插入和提取。纳米片的形态缩短了Na离子从侧面的扩散距离。层间扩展的MoS 2纳米片用作0.5-2.8 V的电压窗口中的钠离子电池阳极,其中插层反应有助于Na的储存,并且可以保留层状结构。通过在100次循环后保留92%的初始充电容量,纳米片表现出高循环稳定性,并在2 A g -1下具有43 mA hg -1的大倍率能力。动力学研究揭示了扩散限制的显着缓解,证实了改善的Na离子扩散和增强的Na储存。提出的工作探索了范德华间隙的利用来存储离子,并为设计其他能源系统中的二维材料提供了启示。
更新日期:2018-10-25
down
wechat
bug