当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nucleation‐Controlled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications
Advanced Materials ( IF 29.4 ) Pub Date : 2018-10-21 , DOI: 10.1002/adma.201805179
Falk Muench 1, 2 , Ronit Popovitz-Biro 3 , Tatyana Bendikov 3 , Yishay Feldman 3 , Burkhard Hecker 4 , Mehtap Oezaslan 4 , Israel Rubinstein 2 , Alexander Vaskevich 2
Affiliation  

Due to their distinctive electronic, optical, and chemical properties, metal nanoplates represent important building blocks for creating functional superstructures. Here, a general deposition method for synthesizing Ag nanoplate architectures, which is compatible with a wide substrate range (flexible, curved, or recessed; consisting of carbon, silicon, metals, oxides, or polymers) is reported. By adjusting the reaction conditions, nucleation can be triggered in the bulk solution, on seeds and by electrodeposition, allowing the production of nanoplate suspensions as well as direct surface modification with open‐porous nanoplate films. The latter are fully percolated, possess a large, easily accessible surface, a defined nanostructure with {111} basal planes, and expose defect‐rich, particularly reactive edges in high density, making them compelling platforms for heterogeneous catalysis, and electro‐ and flow chemistry. This potential is showcased by exploring the catalytic performance of the nanoplates in the reduction of carbon dioxide, 4‐nitrophenol, and hydrogen peroxide, devising two types of microreactors, and by tuning the nanoplate functionality with derivatization reactions.

中文翻译:

银纳米板体系结构的成核控制溶液沉积,可轻松进行衍生化和催化应用

由于其独特的电子,光学和化学特性,金属纳米板是创建功能上层建筑的重要基础。在此,报告了一种合成Ag纳米板结构的通用沉积方法,该方法可与广泛的基材范围(柔性,弯曲或凹陷;由碳,硅,金属,氧化物或聚合物组成)兼容。通过调节反应条件,可以在本体溶液中,在种子上以及通过电沉积触发成核,从而可以生产纳米板悬浮液,并可以用开孔纳米板薄膜直接进行表面改性。后者是完全渗透的,具有大的,易于接近的表面,具有{111}基面的确定的纳米结构,并暴露出缺陷丰富的区域,尤其是高密度的反应性边缘,使它们成为非均相催化,电和流化学的引人注目的平台。通过探索纳米板在还原二氧化碳,4-硝基苯酚和过氧化氢方面的催化性能,设计两种类型的微反应器以及通过衍生化反应调节纳米板的功能性,可以展示这种潜力。
更新日期:2018-10-21
down
wechat
bug