当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrically gated nanoporous membranes for smart molecular flow control†
Nanoscale ( IF 6.7 ) Pub Date : 2018-10-18 00:00:00 , DOI: 10.1039/c8nr05906c
Sungho Kim 1, 2, 3, 4 , Ece Isenbike Ozalp 1, 2, 3, 4 , Mohamed Darwish 1, 2, 3, 4 , Jeffrey A. Weldon 4, 5, 6, 7
Affiliation  

We report a novel conductive nanoporous membrane platform for a smart drug delivery system, which allows low-power electrically controlled delivery of therapeutic drug molecules via field-effect gating. The device was fabricated and tested with two oppositely charged drug molecules for glaucoma treatment. Drug molecules with the same polarity as the channel potential are excluded from the nanochannel by electrostatic repulsion, while molecules with opposite charge are enriched due to electrostatic attraction. Accordingly, the diffusive flow of the charged molecules can be controlled by a single DC gate voltage without the need for any other mechanism. An anodic aluminum oxide (AAO) membrane with 80 nm pore diameter was functionalized by sputtering a chromium (Cr)–gold (Au)–chromium (Cr) stack. The exterior chromium layer was left to oxidize creating the insulation layer for the gate electrode. The resulting pore size was 50 nm in diameter. The +2 V gate voltage increased the transport rate of the ethacrynic acid, which is negatively charged at pH 7.4, by 337% and the −2 V gate voltage decreased the transport rate by 48%. The transport rate of the timolol maleate, which is positively charged in pH 7.4, was decreased by 66% with +2 V gate voltage and increased by 116% with −2 V gate voltage. The transport control was quantified by the on–off ratio (OOR), which is the ratio between the maximum and minimum transport rate. The OOR was altered by surface treatment of the membrane. Removal of the surface charge decreased the OOR of ethacrynic acid from 6.94 to 5.61 and increased the OOR of timolol maleate from 1.36 to 1.99. These measurements were verified by our simulation results. In the simulations, the OOR of ethacrynic acid was decreased from 5.22 to 3.25 and the OOR of timolol maleate was increased from 1.90 to 3.25.

中文翻译:

电动门控的纳米多孔膜,可实现智能分子流控制

我们报告了一种用于智能药物输送系统的新型导电纳米多孔膜平台,该平台允许通过治疗药分子的低功率电控输送场效应门控。制造该装置并用两种带相反电荷的药物分子进行测试,以治疗青光眼。通过静电排斥将具有与通道电位相同极性的药物分子从纳米通道中排除,而具有相反电荷的分子由于静电吸引而富集。因此,可以通过单个DC栅极电压来控制带电分子的扩散流,而无需任何其他机制。通过溅射铬(Cr)–金(Au)–铬(Cr)堆栈来对孔径为80 nm的阳极氧化铝(AAO)膜进行功能化。留下外部铬层以氧化以形成用于栅电极的绝缘层。所得的孔径为直径50nm。+2 V的栅极电压提高了乙炔酸的传输速率,它在pH 7.4处带负电,降低了337%,而-2 V栅极电压使传输速率降低了48%。在+ 7.4 V栅极电压下,马来酸噻吗洛尔的马来酸酯的传输速率在+ 7.4 V时降低了66%,在-2 V栅极电压下增加了116%。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。降低了337%,而-2 V栅极电压使传输速率降低了48%。在+ 7.4 V的栅极电压下,马来酸替莫洛尔的马来酸酯的传输速率在pH 7.4下带正电荷,在+2 V的栅极电压下下降了66%,在-2 V的栅极电压下上升了116%。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。降低了337%,而-2 V栅极电压使传输速率降低了48%。在+ 7.4 V栅极电压下,马来酸噻吗洛尔的马来酸酯的传输速率在+ 7.4 V时降低了66%,在-2 V栅极电压下增加了116%。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。在+ 7.4 V栅极电压下,马来酸噻吗洛尔的马来酸酯的传输速率在+ 7.4 V时降低了66%,在-2 V栅极电压下增加了116%。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。在+ 7.4 V栅极电压下,马来酸噻吗洛尔的马来酸酯的传输速率在+ 7.4 V时降低了66%,在-2 V栅极电压下增加了116%。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。运输控制通过开关率(OOR)进行量化,即最大运输速率与最小运输速率之间的比率。通过膜的表面处理改变了OOR。表面电荷的去除将乙炔酸的OOR从6.94降低到5.61,并将马来酸替莫洛尔的OOR从1.36增加到1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。36至1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。36至1.99。这些测量结果通过我们的仿真结果进行了验证。在模拟中,乙炔酸的OOR从5.22降低到3.25,而噻吗洛尔马来酸酯的OOR从1.90增加到3.25。
更新日期:2018-10-18
down
wechat
bug