当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lipid Corona Formation from Nanoparticle Interactions with Bilayers
Chem ( IF 23.5 ) Pub Date : 2018-10-18 , DOI: 10.1016/j.chempr.2018.09.018
Laura L. Olenick , Julianne M. Troiano , Ariane Vartanian , Eric S. Melby , Arielle C. Mensch , Leili Zhang , Jiewei Hong , Oluwaseun Mesele , Tian Qiu , Jared Bozich , Samuel Lohse , Xi Zhang , Thomas R. Kuech , Augusto Millevolte , Ian Gunsolus , Alicia C. McGeachy , Merve Doğangün , Tianzhe Li , Dehong Hu , Stephanie R. Walter , Aurash Mohaimani , Angela Schmoldt , Marco D. Torelli , Katherine R. Hurley , Joe Dalluge , Gene Chong , Z. Vivian Feng , Christy L. Haynes , Robert J. Hamers , Joel A. Pedersen , Qiang Cui , Rigoberto Hernandez , Rebecca Klaper , Galya Orr , Catherine J. Murphy , Franz M. Geiger

Although mixing nanoparticles with certain biological molecules can result in coronas that afford some control over how engineered nanomaterials interact with living systems, corona formation mechanisms remain enigmatic. Here, we report results from experiments and computer simulations that provide concrete lines of evidence for spontaneous lipid corona formation without active mixing upon attachment to stationary and suspended lipid bilayer membranes. Experiments show that polycation-wrapped particles disrupt the tails of zwitterionic lipids, increase bilayer fluidity, and leave the membrane with reduced ζ potentials. Computer simulations suggest that the contact ion pairing between the lipid head groups and the polycations' ammonium groups leads to the formation of stable, albeit fragmented, lipid bilayer coronas. The mechanistic insight regarding lipid corona formation can be used to improve control over nano-bio interactions and to help understand why some nanomaterial-ligand combinations are detrimental to organisms but others are not.



中文翻译:

纳米粒子与双层相互作用的脂质电晕形成。

尽管将纳米粒子与某些生物分子混合可以产生电晕,这些电晕可以控制工程纳米材料如何与生物系统相互作用,但电晕的形成机理仍然令人迷惑。在这里,我们报告了来自实验和计算机模拟的结果,这些结果提供了自发脂质电晕形成的具体证据,无需在固定和悬浮脂质双层膜上进行主动混合即可形成主动电晕。实验表明,聚阳离子包裹的颗粒会破坏两性离子脂质的尾巴,增加双层流动性,并使膜的ζ电位降低。计算机模拟表明,脂质头基团和聚阳离子的铵基团之间的接触离子配对导致形成稳定的,尽管是零碎的脂质双层电晕。

更新日期:2018-10-18
down
wechat
bug