当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heterostructure Manipulation toward Ameliorating Electrodes for Better Lithium Storage Capability
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2018-10-16 00:00:00 , DOI: 10.1021/acssuschemeng.8b04685
Jing Cuan 1, 2 , Fan Zhang 3 , Hongyu Zhang 3 , Jun Long 2 , Shilin Zhang 2 , Gemeng Liang 2 , Qili Gao 3 , Junnan Hao 2 , Linxi Dong 1 , Gaofeng Wang 1 , Xuebin Yu 1, 3, 4
Affiliation  

As one of the major problems facing lithium ion batteries, sluggish charge transfer often induces undesirable large resistance, overpotential, and round trip inefficiency of batteries during recharge. The need to improve charge transport kinetics is motivating research into directions that would rely on high quality heterostructure designs, since it is reported that the synergistic effects and as-formed inbuilt electric fields of heterostructures could facilitate charge transport across the heterostructure, as well as enforce interactions between the active phases. Heteromanipulation holds great promise for realizing efficient interconnects between charge transport kinetics and heterostructure designs. However, most previous studies delineate ensemble measurements of a given static heteroelectrode, which do not permit isolating and dissecting the effects of heterostructural manipulation on electrochemical performances individually. Here, by choosing conversion type electrodes as an example and comparing series samples which were collected in the evolution of heterostructures, the effects of heterostructure manipulation toward modifying overpotential and lithium storage capability have been systematically investigated. The results demonstrate that structural features (e.g., robust skeleton, smaller grain sizes, and high quality hybridity) play an important role in engendering faster charge transfer and narrowing overpotential than that at the level of micrometer scales.

中文翻译:

异质结构操纵电极,以改善锂的储存能力

作为锂离子电池面临的主要问题之一,缓慢的电荷转移通常会在充电过程中引起不希望的大电阻,过电和电池往返效率低下。由于据报道,异质结构的协同效应和形成的内建电场可以促进电荷跨异质结构的传输,并提高执行效率,因此提高电荷传输动力学的需求正促使人们朝着依赖高质量异质结构设计的方向进行研究。活动阶段之间的相互作用。异质夹杂有望在电荷传输动力学和异质结构设计之间实现有效的互连。但是,大多数先前的研究都描述了给定静态杂电极的整体测量,不允许单独隔离和剖析异质结构操作对电化学性能的影响。在此,以转换型电极为例,比较在异质结构演变过程中收集的系列样品,系统地研究了异质结构操纵对修饰超电势和锂存储能力的影响。结果表明,与微米级水平相比,结构特征(例如坚固的骨架,较小的晶粒尺寸和高质量的杂化)在产生更快的电荷转移和缩小超电势方面起着重要作用。通过以转换型电极为例,比较在异质结构演变过程中收集到的系列样品,系统地研究了异质结构操纵对修饰超电势和锂存储能力的影响。结果表明,与微米级水平相比,结构特征(例如坚固的骨架,较小的晶粒尺寸和高质量的杂化)在产生更快的电荷转移和缩小超电势方面起着重要作用。通过以转换型电极为例,比较在异质结构演变过程中收集到的系列样品,系统地研究了异质结构操纵对修饰超电势和锂存储能力的影响。结果表明,与微米级水平相比,结构特征(例如坚固的骨架,较小的晶粒尺寸和高质量的杂化)在产生更快的电荷转移和缩小超电势方面起着重要作用。
更新日期:2018-10-16
down
wechat
bug