当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrical generation and detection of spin waves in a quantum Hall ferromagnet
Science ( IF 56.9 ) Pub Date : 2018-10-11 , DOI: 10.1126/science.aar4061
Di S. Wei 1 , Toeno van der Sar 2 , Seung Hwan Lee 2 , Kenji Watanabe 3 , Takashi Taniguchi 3 , Bertrand I. Halperin 2 , Amir Yacoby 1, 2
Affiliation  

Magnons propagating in graphene At sufficiently low temperatures, a two-dimensional electron system placed in an external magnetic field can exhibit the so-called quantum Hall effect. In this regime, a variety of magnetic phases may occur, depending on the electron density and other factors. Wei et al. studied the properties of these exotic magnetic phases in graphene. They generated magnons—the excitations of an ordered magnetic system—that were then absorbed by the sample, leaving a mark on its electrical conductance. The magnons were able to propagate across long distances through various magnetic phases in the bulk graphene. Science, this issue p. 229 Transport measurements are used to monitor the propagation of magnons in a graphene sample. Spin waves are collective excitations of magnetic systems. An attractive setting for studying long-lived spin-wave physics is the quantum Hall (QH) ferromagnet, which forms spontaneously in clean two-dimensional electron systems at low temperature and in a perpendicular magnetic field. We used out-of-equilibrium occupation of QH edge channels in graphene to excite and detect spin waves in magnetically ordered QH states. Our experiments provide direct evidence for long-distance spin-wave propagation through different ferromagnetic phases in the N = 0 Landau level, as well as across the insulating canted antiferromagnetic phase. Our results will enable experimental investigation of the fundamental magnetic properties of these exotic two-dimensional electron systems.

中文翻译:

量子霍尔铁磁体中自旋波的发电和检测

在石墨烯中传播的磁子 在足够低的温度下,放置在外部磁场中的二维电子系统可以表现出所谓的量子霍尔效应。在这种情况下,可能会出现各种磁相,这取决于电子密度和其他因素。魏等人。研究了石墨烯中这些奇异磁性相的特性。他们产生了磁振子——有序磁系统的激发——然后被样品吸收,在其电导上留下痕迹。磁振子能够通过体石墨烯中的各种磁相长距离传播。科学,这个问题 p。229 传输测量用于监测石墨烯样品中磁振子的传播。自旋波是磁系统的集体激发。研究长寿命自旋波物理学的一个有吸引力的环境是量子霍尔 (QH) 铁磁体,它在低温和垂直磁场中在干净的二维电子系统中自发形成。我们使用石墨烯中 QH 边缘通道的非平衡占据来激发和检测磁性有序 QH 状态的自旋波。我们的实验为长距离自旋波通过 N = 0 Landau 能级中的不同铁磁相以及绝缘倾斜反铁磁相传播提供了直接证据。我们的结果将有助于对这些奇异的二维电子系统的基本磁性进行实验研究。它在低温和垂直磁场中在干净的二维电子系统中自发形成。我们使用石墨烯中 QH 边缘通道的非平衡占据来激发和检测磁性有序 QH 状态的自旋波。我们的实验为长距离自旋波通过 N = 0 Landau 能级中的不同铁磁相以及绝缘倾斜反铁磁相传播提供了直接证据。我们的结果将有助于对这些奇异的二维电子系统的基本磁性进行实验研究。它在低温和垂直磁场中在干净的二维电子系统中自发形成。我们使用石墨烯中 QH 边缘通道的非平衡占据来激发和检测磁性有序 QH 状态的自旋波。我们的实验为长距离自旋波通过 N = 0 Landau 能级中的不同铁磁相以及绝缘倾斜反铁磁相传播提供了直接证据。我们的结果将有助于对这些奇异的二维电子系统的基本磁性进行实验研究。我们的实验为长距离自旋波通过 N = 0 Landau 能级中的不同铁磁相以及绝缘倾斜反铁磁相传播提供了直接证据。我们的结果将有助于对这些奇异的二维电子系统的基本磁性进行实验研究。我们的实验为长距离自旋波通过 N = 0 Landau 能级中的不同铁磁相以及绝缘倾斜反铁磁相传播提供了直接证据。我们的结果将有助于对这些奇异的二维电子系统的基本磁性进行实验研究。
更新日期:2018-10-11
down
wechat
bug