当前位置: X-MOL 学术Renew. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sn doped α-Fe2O3 (Sn=0,10,20,30 wt%) photoanodes for photoelectrochemical water splitting applications
Renewable Energy ( IF 8.7 ) Pub Date : 2019-04-01 , DOI: 10.1016/j.renene.2018.10.067
B. Jansi Rani , G. Ravi , R. Yuvakkumar , S. Ravichandran , Fuad Ameen , S. AlNadhary

Abstract One pot hydrothermal route was adapted to synthesis pristine and Sn doped α-Fe2O3 nanospheres successfully. Sharp high intense diffraction peaks obtained from XRD confirmed crystalline nature of rhombohedral hematite. The secondary SnO2 face formation was due to increasing Sn dopant concentration. Raman spectra confirmed intrinsic phonon vibration modes [Eg(1)+Eg(2)+Eu] of hematite nanospheres. 2P3/2(1) → 2P1/2 transition by emission peak at 549 nm confirmed hematite phase formation. Metal oxygen vibration (Fe O stretching) was confirmed by absorption band situated at 539 cm−1. The noticeable variation in band gap of pristine hematite nanospheres was due to tetravalent Sn4+ dopant concentration. The lowest band gap energy 1.90 eV was found for 10 wt% Sn4+ doped hematite. Highest photocurrent 2.34 mA/cm2 at 0.098 V V RHE was obtained for 10% Sn doped hematite nanospheres. The EIS exposed the charge transferring mechanism of synthesized pristine and Sn doped α-Fe2O3 nanospheres. M-S plot evidenced that the lower shift of flat band potential for 10 wt% Sn4+ doped hematite was as −0.35 V. CA study proved the good stability over 4 h of the best performed photoanodes. Sn4+ doping and its dopant concentration on pristine hematite had dominant effect on photocatalytic activity of hematite nanospheres.

中文翻译:

用于光电化学水分解应用的 Sn 掺杂 α-Fe2O3 (Sn=0,10,20,30 wt%) 光阳极

摘要 采用一锅水热法成功合成了原始和Sn掺杂的α-Fe2O3纳米球。从 XRD 获得的尖锐的高强度衍射峰证实了菱面体赤铁矿的结晶性质。二次 SnO2 面的形成是由于 Sn 掺杂剂浓度的增加。拉曼光谱证实了赤铁矿纳米球的固有声子振动模式 [Eg(1)+Eg(2)+Eu]。2P3/2(1) → 2P1/2 在 549 nm 处的发射峰跃迁证实了赤铁矿相的形成。金属氧振动(Fe O 拉伸)由位于 539 cm-1 的吸收带证实。原始赤铁矿纳米球带隙的显着变化是由于四价 Sn4+ 掺杂剂浓度造成的。对于 10 wt% Sn4+ 掺杂的赤铁矿,发现最低带隙能量为 1.90 eV。0 时的最高光电流为 2.34 mA/cm2。对于 10% Sn 掺杂的赤铁矿纳米球,获得了 098 V V RHE。EIS 揭示了合成的原始和 Sn 掺杂 α-Fe2O3 纳米球的电荷转移机制。MS 图证明 10 wt% Sn4+ 掺杂的赤铁矿的平带电位的较低偏移为 -0.35 V。CA 研究证明了性能最佳的光阳极在 4 小时内具有良好的稳定性。Sn4+掺杂及其对原始赤铁矿的掺杂浓度对赤铁矿纳米球的光催化活性有显着影响。
更新日期:2019-04-01
down
wechat
bug