当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ‐Fabricated 2D/2D Heterojunctions of Ultrathin SiC/Reduced Graphene Oxide Nanosheets for Efficient CO2 Photoreduction with High CH4 Selectivity
ChemSusChem ( IF 8.4 ) Pub Date : 2018-12-06 , DOI: 10.1002/cssc.201802088
Cheng Han 1 , Yongpeng Lei 2 , Bing Wang 1 , Yingde Wang 1
Affiliation  

Photoreduction of CO2 into fuel molecules such as CH4 represents a promising route to simultaneously explore renewable energy and alleviate global warming. However, the implementation of such a process is hampered by low product yields and poor selectivity. A 2D/2D heterojunction of ultrathin SiC and reduced graphene oxide (RGO) nanosheets was fabricated in situ for efficient and selective photoreduction of CO2. Ultrathin SiC suppresses significant charge recombination in the bulk phase, thus providing more energetic electrons. The robust 2D/2D heterojunction allows fast transfer of energetic electrons from SiC to RGO. Combining the vital role of RGO in facilitating CO2 activation, the optimized SiC/RGO exhibits an electron‐transfer rate of 58.17 μmol h−1 g−1 towards CO2 reduction, 2.7 times that of pure SiC (20.25 μmol h−1 g−1). About 92 % of the transferred electrons from SiC are devoted to generating CH4 (6.72 μmol h−1 g−1). Such high efficiency and selectivity are mainly a result of the densely accumulated energetic electrons within RGO, which facilitate the eight‐electron process to produce CH4. This work will inspire the design of catalyst/cocatalyst systems for efficient and selective photoreduction of CO2.

中文翻译:

超薄SiC /还原石墨烯氧化物纳米片的原位制造2D / 2D异质结,可实现高CH4选择性的高效CO2光还原

将CO 2光还原为燃料分子(例如CH 4)代表了同时探索可再生能源和缓解全球变暖的有前途的途径。然而,这种方法的实施由于产物产率低和选择性差而受到阻碍。原位制备了超薄SiC和还原氧化石墨烯(RGO)纳米片的2D / 2D异质结,以实现CO 2的高效选择性光还原。超薄SiC可抑制体相中的显着电荷复合,从而提供更多的高能电子。强大的2D / 2D异质结允许将高能电子从SiC快速转移到RGO。结合RGO在促进CO 2中的重要作用活化后,优化的SiC / RGO对CO 2还原的电子转移速率为58.17μmolh -1  g -1,是纯SiC(20.25μmolh -1  g -1)的2.7倍。来自SiC的约92%的转移电子专用于生成CH 4(6.72μmolh -1  g -1)。如此高的效率和选择性主要是由于RGO内高能电子的密集积累,它促进了八电子过程产生CH 4的过程。这项工作将启发催化剂/助催化剂系统的设计,以实现有效和选择性的CO 2光还原。
更新日期:2018-12-06
down
wechat
bug