当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New Generation Hole Transporting Materials for Perovskite Solar Cells: Amide‐Based Small‐Molecules with Nonconjugated Backbones
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2018-10-08 , DOI: 10.1002/aenm.201801605
Michiel L. Petrus 1 , Kelly Schutt 2 , Maximilian T. Sirtl 1 , Eline M. Hutter 3 , Anna C. Closs 1 , James M. Ball 4 , Johan C. Bijleveld 5 , Annamaria Petrozza 4 , Thomas Bein 1 , Theo J. Dingemans 6 , Tom J. Savenije 3 , Henry Snaith 2 , Pablo Docampo 7
Affiliation  

State‐of‐the‐art perovskite‐based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro‐OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT‐Amide‐TPA) is reported in which a functional amide‐based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of <$5 g−1. When employed in perovskite solar cells, EDOT‐Amide‐TPA demonstrates stabilized power conversion efficiencies up to 20.0% and reproducibly outperforms Spiro‐OMeTAD in direct comparisons. Time resolved microwave conductivity measurements indicate that the observed improvement originates from a faster hole injection rate from the perovskite to EDOT‐Amide‐TPA. Additionally, the devices exhibit an improved lifetime, which is assigned to the coordination of the amide bond to the Li‐additive, offering a novel strategy to hamper the migration of additives. It is shown that, despite the lack of a conjugated backbone, the amide‐based HTM can outperform state‐of‐the‐art HTMs at a fraction of the cost, thereby providing a novel set of design strategies to develop new, low‐cost HTMs.

中文翻译:

钙钛矿太阳能电池的新一代空穴传输材料:具有非共轭骨架的基于酰胺的小分子

最先进的钙钛矿基太阳能电池采用了昂贵的有机空穴传输材料(HTM),例如Spiro-OMeTAD,这反过来限制了这一有前途的技术的商业化。本文报道了一种HTM(EDOT-Amide-TPA),其中引入了基于酰胺的功能性骨架,该骨架可通过简单的缩合反应合成该材料,估计成本<$ 5 g -1。在钙钛矿太阳能电池中使用时,EDOT-Amide-TPA在直接比较中显示出高达20.0%的稳定功率转换效率,并且可再现地优于Spiro-OMeTAD。时间分辨的微波电导率测量表明,观察到的改善源于从钙钛矿到EDOT-Amide-TPA的更快的空穴注入速率。此外,这些器件还具有更长的使用寿命,这归因于酰胺键与锂添加剂的配位,从而提供了一种新颖的策略来阻止添加剂的迁移。结果表明,尽管缺少共轭主链,基于酰胺的HTM仍可以以一小部分的成本胜过最新的HTM,从而提供了一套新颖的设计策略来开发新的,低成本的HTM。
更新日期:2018-10-08
down
wechat
bug