当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetic approach to superconductivity hidden behind a competing order.
Science Advances ( IF 13.6 ) Pub Date : 2018-Oct-01 , DOI: 10.1126/sciadv.aau3489
Hiroshi Oike 1, 2 , Manabu Kamitani 1 , Yoshinori Tokura 1, 2 , Fumitaka Kagawa 1, 2
Affiliation  

Exploration for superconductivity is one of the research frontiers in condensed matter physics. In strongly correlated electron systems, the emergence of superconductivity is often inhibited by the formation of a thermodynamically more stable magnetic/charge order. Thus, to develop the superconductivity as the thermodynamically most stable state, the free-energy balance between the superconductivity and the competing order has been controlled mainly by changing thermodynamic parameters, such as the physical/chemical pressure and carrier density. However, such a thermodynamic approach may not be the only way to materialize the superconductivity. We present a new kinetic approach to avoiding the competing order and thereby inducing persistent superconductivity. In the transition-metal dichalcogenide IrTe2 as an example, by using current pulse-based rapid cooling of up to ~107 K s-1, we successfully kinetically avoid a first-order phase transition to a competing charge order and uncover metastable superconductivity hidden behind. Because the electronic states at low temperatures depend on the history of thermal quenching, electric pulse applications enable nonvolatile and reversible switching of the metastable superconductivity, a unique advantage of the kinetic approach. Thus, our findings provide a new approach to developing and manipulating superconductivity beyond the framework of thermodynamics.

中文翻译:

隐藏在竞争顺序后面的超导动力学方法。

超导电性的探索是凝聚态物理的研究前沿之一。在强相关的电子系统中,通常通过形成热力学上更稳定的磁/电荷序来抑制超导的出现。因此,为了将超导电性发展为热力学最稳定的状态,主要通过改变热力学参数,例如物理/化学压力和载流子密度,来控制超导电性和竞争顺序之间的自由能平衡。但是,这种热力学方法可能不是实现超导性的唯一方法。我们提出了一种新的动力学方法来避免竞争顺序,从而诱导持久的超导性。在过渡金属二卤化物IrTe 2中例如,通过使用基于电流脉冲的高达10 7 K s -1的快速冷却,我们成功地从动力学上避免了从一阶相变到竞争电荷阶,并揭示了背后隐藏的亚稳态超导性。由于低温下的电子状态取决于热淬火的历史,因此电脉冲的应用使亚稳态超导性能够进行非易失性和可逆切换,这是动力学方法的独特优势。因此,我们的发现提供了一种超越热力学框架开发和操纵超导性的新方法。
更新日期:2018-10-06
down
wechat
bug