当前位置: X-MOL 学术Org. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling the conductance of single-molecule junctions with high spin filtering efficiency by intramolecular proton transfer
Organic Electronics ( IF 3.2 ) Pub Date : 2018-10-05 , DOI: 10.1016/j.orgel.2018.09.048
Zi-Qun Wang , Yongfang Li , Xiao Niu , Ming-Zhi Wei , Mi-Mi Dong , Gui-Chao Hu , Zong-Liang Li , Dunyou Wang , Chuan-Kui Wang , Guang-Ping Zhang

The pursuit of miniaturization of magnetic electronic components spurs intensive theoretical and experimental researches on designing molecule-scale magnetic devices. Controlling the transport properties is one of the most vital focuses for magnetic molecular devices. In this work, magnetic devices constructed by a single epindolidione (Epi) molecule (5,11-dihydrodibenzo[b,g][1,5]naphthyridine-6,12-dione) bridging two zigzag graphene nanoribbon (zGNR) electrodes are theoretically designed. The Epi molecule can be converted between the keto and enol forms, which is confirmed by first principle molecular dynamics method. The influences of intramolecular proton transfer and the bridging manner between the core molecule and zGNR electrodes on the magnetic transport properties are investigated. Spin-resolved current-voltage (I-V) curves show that both the keto and enol devices display remarkable spin filtering effect. However, the effect of intramolecular proton transfer on the electron transport properties depends on the bridging manner between the Epi molecule and zGNR electrodes. When the Epi molecule is connected to zGNR electrodes with 4,7-sites (A bridging manner), the electron transport properties of molecular junctions are hardly affected by the intramolecular proton transfer. On the contrary, the conductance of the molecular junctions is significantly modulated by the intramolecular proton transfer when the Epi molecule is connected to zGNR electrodes with 4,4-sites (B bridging manner). Further analysis reveals that the high spin filtering effect originates from stronger coupling between spin-up edge electronic states of zGNR electrodes and states of the core molecule. With B bridging manner, the conjugation characteristics of the Epi molecule as well as the transmission pathway of tunneling electrons can be largely modulated by the intramolecular proton transfer. Our work proposes a feasible way to control the conductance of single-molecule junctions by taking advantage of intramolecular proton transfer.



中文翻译:

通过分子内质子转移以高自旋过滤效率控制单分子结的电导

对磁性电子元件小型化的追求刺激了对设计分子尺度磁性器件的深入理论和实验研究。控制传输特性是磁性分子设备最重要的重点之一。在这项工作中,理论上,由单个表皮二酮(Epi)分子(5,11-二氢二苯并[b,g] [1,5]萘啶-6,12-二酮)分子桥接两个之字形石墨烯纳米带(zGNR)电极构成的磁性器件设计。Epi分子可以在酮和烯醇形式之间转化,这通过第一原理分子动力学方法得到证实。研究了分子内质子转移以及核心分子与zGNR电极之间的桥接方式对磁输运性质的影响。自旋分辨电流电压(IV)曲线表明,酮和烯醇装置均显示出显着的自旋过滤效果。然而,分子内质子转移对电子传输性质的影响取决于Epi分子与zGNR电极之间的桥接方式。当Epi分子通过4,7位(桥接方式)连接到zGNR电极时,分子内质子转移几乎不会影响分子结的电子传输性质。相反,当Epi分子以4,4 '连接到zGNR电极时,分子内质子转移显着调节了分子连接的电导率-站点(B桥接方式)。进一步的分析表明,高自旋滤波效应源自zGNR电极的自旋上边缘电子状态与核心分子状态之间的较强耦合。通过B桥联方式,Epi分子的共轭特性以及隧穿电子的传输路径可以通过分子内质子转移而得到很大的调节。我们的工作提出了一种利用分子内质子转移来控制单分子连接的电导的可行方法。

更新日期:2018-10-05
down
wechat
bug