当前位置: X-MOL 学术Small Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monitoring Fast, Voxel-Scale Cure Kinetics via Sample-Coupled-Resonance Photorheology.
Small Methods ( IF 12.4 ) Pub Date : 2018-10-04 , DOI: 10.1002/smtd.201800275
Callie I Fiedler-Higgins 1 , Lewis M Cox 1 , Frank W DelRio 1 , Jason P Killgore 1
Affiliation  

Photopolymerizable materials are the focus of extensive research across a variety of fields ranging from additive manufacturing to regenerative medicine. However, poorly understood material mechanical and rheological properties during polymerization at the relevant exposure powers and single-voxel length-scales limit advancements in part performance and throughput. Here, a novel atomic force microscopy (AFM) technique, sample-coupled-resonance photorheology (SCRPR), to locally characterize the mechano-rheological properties of photopolymerized materials on the relevant reaction kinetic timescales, is demonstrated. By coupling an AFM tip to a photopolymer and exposing the coupled region to a laser, two fundamental photopolymerization phenomena: (1) timescales of photopolymerization at high laser power and (2) reciprocity between photodose and material properties are studied. The ability to capture rapid kinetic changes occurring during polymerization with SCRPR is demonstrated. It is found that reciprocity is only valid for a finite range of exposure powers in the verification material and polymerization is highly localized in a low-diffusion system. After polymerization, in situ imaging of a single polymerized voxel is performed using material-appropriate topographic and nanomechanical modalities of the AFM while still in the as-printed environment.

中文翻译:

通过样品耦合共振光流变学监测快速的体素级固化动力学。

可光聚合材料是从增材制造到再生医学等各个领域的广泛研究的重点。然而,在相关的曝光功率和单体素长度尺度下,在聚合过程中对材料的机械力学和流变性质的了解很少,这限制了零件性能和生产能力的进步。在这里,展示了一种新颖的原子力显微镜(AFM)技术,即样品耦合共振光流变学(SCRPR),用于在相关的反应动力学时间尺度上局部表征光聚合材料的机械流变特性。通过将AFM尖端耦合到光敏聚合物上并将耦合的区域暴露在激光下,两种基本的光致聚合现象:(1)研究了高激光功率下光聚合的时间尺度,以及(2)光剂量与材料性能之间的互易性。证明了捕获在SCRPR聚合过程中发生的快速动力学变化的能力。已经发现,互易性仅对验证材料中有限的曝光功率范围有效,并且聚合在低扩散系统中高度局限。聚合后,在仍处于印刷环境中时,使用材料适当的AFM形貌和纳米力学模态对单个聚合体素进行原位成像。已经发现,互易性仅对验证材料中有限的曝光功率范围有效,并且聚合在低扩散系统中高度局限。聚合后,在仍处于印刷环境中时,使用材料适当的AFM形貌和纳米力学模态对单个聚合体素进行原位成像。已经发现,互易性仅对验证材料中有限的曝光功率范围有效,并且聚合在低扩散系统中高度局限。聚合后,在仍处于印刷环境中时,使用材料适当的AFM形貌和纳米力学模态对单个聚合体素进行原位成像。
更新日期:2018-10-04
down
wechat
bug