当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Localized Liquefaction Coupled with Rapid Solidification for Miniaturizing/Nanotexturizing Microfibrous Bioassemblies into Robust, Liquid-Resistant Sheet
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2018-10-03 00:00:00 , DOI: 10.1021/acssuschemeng.8b04215
Dong Wu 1 , Limei Li 1 , Ying Wang 1 , Zhengren Meng 1 , Xueren Qian 1 , Yongsheng Wang 1 , Jing Shen 1
Affiliation  

Biopolymeric fibers with microscale diameters have long been commercially used to generate network-structured assemblies (paper-based products). Despite overwhelming productivity and widespread use, unconventional applications of these products are challenged by inherent imperfection related to limited internal bonding and an abundance of interfiber gaps, among other things. Here, we demonstrate the use of a green, scalable concept involving localized liquefaction and rapid solidification to miniaturize microfibrous bioassemblies into nanotextured, delicately reorganized sheets. The time for bioassembly–solvent interaction was identified as a critical factor. On the surface of reorganized bioassemblies, size-tunable outgrowths were formed due to nonsolvent-induced rapid phase transition. A bioassembly–solvent contact time of 10 min resulted in surface nanostructuring. Densification of bioassemblies correlated well with the development of optical transparency. Reorganized bioassemblies exhibited pronounced mechanical robustness even after being soaked in water. Strong resistance to penetration by aqueous/nonaqueous liquids was identified. The liquid-contaminated surface of reorganized bioassemblies was easily cleanable. These features can be attributed to significant improvement of structural integrity. On the basis of the use of green, recyclable solvents/nonsolvents, the facile miniaturization of mass-producible microfibrous bioassemblies into delicately structured sheets with tunable functionalities would facilitate applications such as those related to advanced barrier packaging materials, sensors, and electronics.

中文翻译:

局部液化与快速固化相结合,可将微纤维生物组件最小化/纳米化为坚固,耐液体的片材

长期以来,具有微米级直径的生物聚合物纤维已经在商业上用于生成网络结构的组件(纸基产品)。尽管生产率极高且得到了广泛使用,但这些产品的非常规应用仍面临着与内部粘合力有限和纤维间缝隙丰富相关的固有缺陷的挑战。在这里,我们演示了绿色环保,可扩展的概念的使用,该概念涉及局部液化和快速固化,以将微纤维生物组件小型化为纳米织构的,经过精细重组的薄片。生物组装-溶剂相互作用的时间被确定为关键因素。在重组的生物集合体的表面上,由于非溶剂诱导的快速相变,形成了大小可调节的产物。10分钟的生物组装-溶剂接触时间导致表面纳米结构化。生物组件的致密化与光学透明性的发展紧密相关。重组后的生物组件即使浸入水中也表现出明显的机械强度。确认了对水/非水液体渗透的强抵抗力。重组后的生物组件的液体污染表面很容易清洁。这些特征可以归因于结构完整性的显着改善。在使用绿色的,可循环使用的溶剂/非溶剂的基础上,将可大量生产的微纤维生物组件轻松小型化为具有可调功能的精细结构的片材将有助于诸如与高级阻隔包装材料,传感器和电子产品相关的应用。
更新日期:2018-10-03
down
wechat
bug