当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced transport in transistor by tuning transition-metal oxide electronic states interfaced with diamond.
Science Advances ( IF 13.6 ) Pub Date : 2018-Sep-01 , DOI: 10.1126/sciadv.aau0480
Zongyou Yin 1, 2 , Moshe Tordjman 1, 3 , Youngtack Lee 1 , Alon Vardi 1 , Rafi Kalish 3 , Jesús A. del Alamo 1
Affiliation  

High electron affinity transition-metal oxides (TMOs) have gained a central role in two-dimensional (2D) electronics by enabling unprecedented surface charge doping efficiency in numerous exotic 2D solid-state semiconductors. Among them, diamond-based 2D electronics are entering a new era by using TMOs as surface acceptors instead of previous molecular-like unstable acceptors. Similarly, surface-doped diamond with TMOs has recently yielded record sheet hole concentrations (2 × 1014 cm-2) and launched the quest for its implementation in microelectronic devices. Regrettably, field-effect transistor operation based on this surface doping has been so far disappointing due to fundamental material obstacles such as (i) carrier scattering induced by nonhomogeneous morphology of TMO surface acceptor layer, (ii) stoichiometry changes caused by typical transistor fabrication process, and (iii) carrier transport loss due to electronic band energy misalignment. This work proposes and demonstrates a general strategy that synergistically surmounts these three barriers by developing an atomic layer deposition of a hydrogenated MoO3 layer as a novel efficient surface charge acceptor for transistors. It shows high surface uniformity, enhanced immunity to harsh fabrication conditions, and benefits from tunable electronic gap states for improving carrier transfer at interfaces. These breakthroughs permit crucial integration of TMO surface doping into transistor fabrication flows and allow outperforming electronic devices to be reached.

中文翻译:

通过调节与金刚石接触的过渡金属氧化物电子态,增强了晶体管的传输。

高电子亲和力过渡金属氧化物(TMO)通过在众多奇异的2D固态半导体中实现前所未有的表面电荷掺杂效率,在二维(2D)电子产品中发挥了核心作用。其中,基于金刚石的2D电子产品通过使用TMO作为表面受体代替以前的分子状不稳定受体,进入了一个新时代。同样地,表面掺杂TMO的钻石最近产生了创纪录的片孔浓度(2×10 14 cm -2),并开始寻求在微电子设备中实现该功能。遗憾的是,迄今为止,基于这种表面掺杂的场效应晶体管由于令人失望的基本材料障碍而令人失望,例如:(i)TMO表面受体层的非均匀形态引起的载流子散射,(ii)典型晶体管制造工艺导致的化学计量变化(iii)由于电子频带能量未对准而造成的载波传输损失。这项工作提出并证明了通过开发氢化MoO 3的原子层沉积来协同克服这三个障碍的一般策略。层作为晶体管的新型有效表面电荷受体。它显示出高的表面均匀性,增强了对苛刻制造条件的抵抗力,并受益于可调节的电子间隙状态,可改善界面处的载流子传输。这些突破允许将TMO表面掺杂至关重要地集成到晶体管制造流程中,并使电子器件的性能超越传统器件。
更新日期:2018-09-29
down
wechat
bug