当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In silico design and assembly of cage molecules into porous molecular materials†
Molecular Systems Design & Engineering ( IF 3.6 ) Pub Date : 2018-09-26 00:00:00 , DOI: 10.1039/c8me00055g
Marco Bernabei 1, 2, 3 , Raúl Pérez-Soto 1, 2, 3 , Ismael Gómez García 1, 2, 3 , Maciej Haranczyk 1, 2, 3
Affiliation  

Porous materials based on organic cage molecules are an exciting alternative to porous framework materials. Their modular chemistry offers significant structure tunability while their solution processability facilitates their assembly in functional structures in either a crystalline or an amorphous phase. The family of imine cages have been the most widely studied, with several analogues synthesized and tested in applications such noble gas separation, water purification and sensing. The crystals reported so far based on the imine cages obtained by condensation of 1,3,5-triformylbenzene with several vicinal diamines (1,2-diamine) have rather small pore diameters. For example, the benchmark Covalent Cage 3 (CC3) crystal has a pore limiting diameter of 3.65 Å, and may experience diffusion limitations hindering its technological applications. The results reported so far suggest that larger cavities are generally not supported in the crystal phase, unless they are stabilized by solvent molecules. In this work, we employ a density functional theory-refined crystal structure prediction approach to perform screening of various CC3 analogues to identify cages that can support stable low density porous structures. Based on the analysis of the crystal energy landscapes, we present a number of synthetically accessible phases that support pore limiting diameters longer than 10 Å.

中文翻译:

在计算机设计中,将笼状分子组装成多孔分子材料

基于有机笼状分子的多孔材料是多孔骨架材料的令人兴奋的替代方法。它们的模块化化学性质提供了显着的结构可调性,而其溶液的可加工性则促进了它们以结晶相或无定形相组装成功能结构。亚胺笼系列已得到最广泛的研究,在惰性气体分离,水净化和传感等应用中合成并测试了几种类似物。迄今为止报道的基于1,3,5-三甲酰基苯与几种邻位二胺(1,2-二胺)缩合获得的亚胺笼的晶体具有相当小的孔径。例如,基准共价笼3(CC3)晶体的孔径限制直径为3.65Å,并且可能会遇到扩散限制,从而阻碍了其技术应用。迄今为止报道的结果表明,除非通过溶剂分子使它们稳定,否则通常在晶相中不支持较大的空穴。在这项工作中,我们采用密度泛函理论精炼的晶体结构预测方法,对各种CC3类似物进行筛选,以鉴定能够支持稳定的低密度多孔结构的笼子。根据对晶体能量分布的分析,我们提出了许多可合成的相,这些相支持的孔径限制直径大于10Å。我们采用密度泛函理论精制的晶体结构预测方法,对各种CC3类似物进行筛选,以鉴定能够支持稳定的低密度多孔结构的笼子。根据对晶体能量分布的分析,我们提出了许多可合成的相,这些相支持的孔径限制直径大于10Å。我们采用密度泛函理论精制的晶体结构预测方法,对各种CC3类似物进行筛选,以鉴定能够支持稳定的低密度多孔结构的笼子。根据对晶体能量分布的分析,我们提出了许多可合成的相,这些相支持的孔径限制直径大于10Å。
更新日期:2018-09-26
down
wechat
bug