当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual‐Perception System
Advanced Materials ( IF 29.4 ) Pub Date : 2018-09-25 , DOI: 10.1002/adma.201803961
Hanlin Wang 1, 2 , Qiang Zhao 1, 2 , Zhenjie Ni 1 , Qingyuan Li 1, 2 , Hongtao Liu 1 , Yunchang Yang 1, 2 , Lifeng Wang 1 , Yang Ran 1, 2 , Yunlong Guo 1 , Wenping Hu 1 , Yunqi Liu 1
Affiliation  

Human eyes undertake the majority of information assimilation for learning and memory. Transduction of the color and intensity of the incident light into neural signals is the main process for visual perception. Besides light‐sensitive elements that function as rods and cones, artificial retinal systems require neuromorphic devices to transform light stimuli into post‐synaptic signals. In terms of plasticity timescale, synapses with short‐term plasticity (STP) and long‐term potentiation (LTP) represent the neural foundation for experience acquisition and memory formation. Currently, electrochemical transistors are being researched as STP–LTP devices. However, their LTP timescale is confined to a second‐to‐minute level to give unreliable non‐volatile memory. This issue limits multiple‐plasticity synapses with tunable temporal characteristics and efficient sensory‐memory systems. Herein, a ferroelectric/electrochemical modulated organic synapse is proposed, attaining three prototypes of plasticity: STP/LTP by electrochemical doping/de‐doping and ferroelectric‐LTP from dipole switching. The device supplements conventional electrochemical transistors with 10000‐second‐persistent non‐volatile plasticity and unique threshold switching properties. As a proof‐of‐concept for an artificial visual‐perception system, an ultraflexible, light‐triggered organic neuromorphic device (LOND) is constructed by this synapse. The LOND transduces incident light signals with different frequency, intensity, and wavelength into synaptic signals, both volatile and non‐volatile.

中文翻译:

用于超柔性人工视觉系统的铁电/电化学调制有机突触

人眼承担了学习和记忆的大部分信息同化。将入射光的颜色和强度转换为神经信号是视觉感知的主要过程。除了充当杆和锥体的光敏元件外,人工视网膜系统还需要神经形态设备将光刺激转换为突触后信号。就可塑性时间尺度而言,具有短期可塑性(STP)和长期增强(LTP)的突触代表了经验获取和记忆形成的神经基础。目前,正在研究将电化学晶体管用作STP–LTP器件。但是,它们的LTP时间范围仅限于2到2分钟,以提供不可靠的非易失性存储器。这个问题限制了具有可调节的时间特性和有效的感觉记忆系统的多重可塑性突触。在此,提出了一种铁电/电化学调制的有机突触,获得了三个可塑性原型:通过电化学掺杂/去掺杂的STP / LTP和从偶极子开关产生的铁电-LTP。该器件以10000秒持久的非易失性可塑性和独特的阈值开关特性补充了传统的电化学晶体管。作为人工视觉系统的概念证明,此突触构造了一种超柔韧性,轻触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。提出了一种铁电/电化学调制的有机突触,获得了三个可塑性原型:通过电化学掺杂/去掺杂的STP / LTP和从偶极子开关产生的铁电LTP。该器件以10000秒持久的非易失性可塑性和独特的阈值开关特性补充了传统的电化学晶体管。作为人工视觉系统的概念证明,此突触构造了一种超柔韧性,轻触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。提出了一种铁电/电化学调制的有机突触,获得了三个可塑性原型:通过电化学掺杂/去掺杂的STP / LTP和从偶极子开关产生的铁电LTP。该器件以10000秒持久的非易失性可塑性和独特的阈值开关特性补充了传统的电化学晶体管。作为人工视觉系统的概念证明,此突触构造了一种超柔韧性,轻触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。通过电化学掺杂/去掺杂的STP / LTP和来自偶极子开关的铁电LTP。该器件以10000秒持久的非易失性可塑性和独特的阈值开关特性补充了传统的电化学晶体管。作为人工视觉系统的概念证明,此突触构造了一种超柔韧性,轻触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。通过电化学掺杂/去掺杂的STP / LTP和来自偶极子开关的铁电LTP。该器件以10000秒持久的非易失性可塑性和独特的阈值开关特性补充了传统的电化学晶体管。作为人工视觉系统的概念证明,此突触构造了一种超柔韧性,轻触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。这个突触构造了光触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。这个突触构造了光触发的有机神经形态装置(LOND)。LOND将具有不同频率,强度和波长的入射光信号转换为易失性和非易失性的突触信号。
更新日期:2018-09-25
down
wechat
bug