当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Observation of molecular self-assembly events in massively parallel microdroplet arrays†
Lab on a Chip ( IF 6.1 ) Pub Date : 2018-09-21 00:00:00 , DOI: 10.1039/c8lc00862k
Zenon Toprakcioglu 1, 2, 3, 4, 5 , Pavan Kumar Challa 1, 2, 3, 4, 5 , Aviad Levin 1, 2, 3, 4, 5 , Tuomas P. J. Knowles 1, 2, 3, 4, 5
Affiliation  

The self-assembly of peptide and protein molecules into nanoscale filaments is a process associated with both biological function and malfunction. Microfluidic techniques can provide powerful tools in the study of such aggregation phenomena while providing access to exploring the role of molecular interactions in disease development. Yet, a common challenge encountered in the study of protein aggregation is the difficulty in achieving spatial and temporal control of the underlying processes. Here, we present a planar (2-D) device allowing for both the generation and confinement of 10 000 monodisperse water-in-oil droplets in an array of chambers with a trapping efficiency of 99%. Due to the specific geometry of the device, droplets can be formed and immediately trapped on the same chip, without the need for continuous flow of the oil phase. Furthermore, we demonstrate the capability of this device as a platform to study the aggregation kinetics and determine stochastic molecular nanoscale self-assembly events in a highly parallel manner for the aggregation of the dipeptide, diphenylalanine, the core recognition motif of the Aβ-42 peptide associated with Alzheimer's disease. The ability to reproducibly generate and confine monodisperse water-in-oil droplets with an extremely high trapping efficiency while maintaining entrapment under zero-flow conditions, on timescales compatible with observing molecular self-assembly events, renders it promising for numerous potential further applications in the biological and biophysical fields.

中文翻译:

大规模平行微滴阵列中分子自组装事件的观察

肽和蛋白质分子自组装成纳米级细丝是与生物学功能和功能障碍相关的过程。微流体技术可以为研究这种聚集现象提供强大的工具,同时提供探索分子相互作用在疾病发展中的作用的途径。然而,在蛋白质聚集研究中遇到的一个共同挑战是难以实现对潜在过程的时空控制。在这里,我们介绍了一种平面(2-D)装置,该装置可以在一组腔室中产生和限制10 000个单分散油包水小滴,捕集效率为99%。由于设备的特定几何形状,可以形成液滴并立即将其捕获在同一芯片上,而无需连续油相流动。此外,我们证明了该装置作为研究聚集动力学并以高度平行的方式确定二肽,二苯丙氨酸(Aβ-42肽的核心识别基序)的聚集的随机分子纳米级自组装事件的平台的能力。与阿尔茨海默氏病有关。能够以极高的捕集效率可重现地产生和限制单分散油包水液滴,同时在零流量条件下保持截留的能力,且时间尺度与观察分子自组装事件相适应,这使其有希望在分子生物学中进一步应用生物和生物物理领域。我们证明了该设备作为研究聚集动力学并以高度平行的方式确定二肽,二苯丙氨酸,与之相关的Aβ-42肽的核心识别基序的聚集的随机分子纳米级自组装事件的平台的能力。阿尔茨海默氏病。能够以极高的捕集效率可重现地产生和限制单分散油包水液滴,同时在零流量条件下保持截留的能力,且时间尺度与观察分子自组装事件相适应,这使其有希望在分子生物学中进一步应用生物和生物物理领域。我们证明了该设备作为研究聚集动力学并以高度平行的方式确定二肽,二苯丙氨酸,与之相关的Aβ-42肽的核心识别基序的聚集的随机分子纳米级自组装事件的平台的能力。阿尔茨海默氏病。能够以极高的捕集效率可重现地产生和限制单分散油包水液滴,同时在零流量条件下保持截留的能力,且时间尺度与观察分子自组装事件相适应,这使其有希望在分子生物学中进一步应用生物和生物物理领域。与阿尔茨海默氏病有关的Aβ-42肽的核心识别基序。能够以极高的捕集效率可重现地产生和限制单分散油包水液滴,同时在零流量条件下保持截留的能力,且时间尺度与观察分子自组装事件相适应,这使其有希望在分子生物学中进一步应用生物和生物物理领域。是与阿尔茨海默氏病有关的Aβ-42肽的核心识别基序。能够以极高的捕集效率可重现地产生和限制单分散油包水液滴,同时在零流量条件下保持截留的能力,且时间尺度与观察分子自组装事件相适应,这使其有希望在分子生物学中进一步应用生物和生物物理领域。
更新日期:2018-09-21
down
wechat
bug