当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution
Nano Energy ( IF 17.6 ) Pub Date : 2018-09-19 , DOI: 10.1016/j.nanoen.2018.09.046
Huanyu Jin , Xin Liu , Yan Jiao , Anthony Vasileff , Yao Zheng , Shi-Zhang Qiao

Electrocatalysts are increasingly being used for the production of clean energy. In the past few decades, a wide range of two-dimensional (2D) materials have shown great potential in replacing noble metal catalysts for various electrocatalytic reactions. However, development of alkaline hydrogen evolution technology (a kinetically sluggish process for the conversion of electricity to hydrogen fuel in water electrolyzes) is greatly hindered due to the lack of active candidate materials and mechanistic understanding. In this work, we prepared a hybrid material of 2D graphitic carbon nitride and 2D molybdenum nitride (C3N4@MoN) using an interface engineering strategy. The resultant material had a well-designed heterostructure and unique electronic structure. The intimate interaction of both inert graphitic carbon nitride (g-C3N4) and MoN surfaces induced a highly active interface with tunable dual active sites for alkaline HER. Thus, the 2D C3N4@MoN hybrid exhibited highly efficient electrocatalytic performance which is better than most of the recently reported non-noble metal catalysts. The combination of experimental characterization with density functional theory calculations shows that the enhanced activity originates from the synergy between the optimized hydrogen adsorption energy on the g-C3N4 sites and enhanced hydroxyl adsorption energy on the MoN sites.



中文翻译:

在二维C 3 N 4 @MoN杂化物上构建可调谐的双活性位点,用于电催化制氢

电催化剂越来越多地用于生产清洁能源。在过去的几十年中,各种各样的二维(2D)材料在代替贵金属催化剂进行各种电催化反应方面显示出了巨大的潜力。但是,由于缺乏有效的候选材料和对机理的了解,大大阻碍了碱性氢释放技术的发展(一种在水电解过程中将电能转化为氢燃料的动力学缓慢过程)。在这项工作中,我们制备了2D石墨氮化碳和2D氮化钼(C 3 N 4@MoN)使用界面工程策略。所得材料具有精心设计的异质结构和独特的电子结构。惰性石墨碳氮化碳(gC 3 N 4)和MoN表面的紧密相互作用诱导了一个高活性的界面,具有碱性HER的可调双活性位。因此,2D C 3 N 4 @MoN杂化物表现出高效的电催化性能,其性能优于最近报道的大多数非贵金属催化剂。实验表征与密度泛函理论计算的结合表明,增强的活性源自优化的gC 3 N 4上的氢吸附能之间的协同作用 位和MoN位上增强的羟基吸附能。

更新日期:2018-09-19
down
wechat
bug