当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microstructure analysis and mechanical properties by instrumented indentation of Charonia Lampas Lampas shell.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.9 ) Pub Date : 2018-09-18 , DOI: 10.1016/j.jmbbm.2018.09.018
K Boufala 1 , S Ouhenia 1 , G Louis 2 , D Betrancourt 2 , D Chicot 3 , I Belabbas 1
Affiliation  

Scanning electron microscopy, X-ray diffraction and Fourier transformed infrared spectroscopy have been used to characterize the microstructure and instrumented microindentation for the determination of the mechanical properties of Charonia Lampas Lampas shell. Both elastic modulus and hardness are found to be dependent on the texture of the three distinct layers. From the analysis of load-depth curves, the shell exhibits small viscoelastic behaviour at low indentation loads and mainly elastoplastic behaviour at higher loads. These phenomena were attributed to the influence of the organic matter present in the shell. Both elastic modulus and hardness are found to be load-dependent in each layer in relation to their microstructure and, accordingly, to the anisotropy of the predominant mineral part. At a macroscopic scale, this tendency is explained by using a rule of mixture and jointly by the anisotropy of the aragonite. The Bull and Page model is subsequently applied to the hardness variation in order to compute the macrohardness which is the characteristic hardness number of a material and the hardness parameter related to the indentation size effect. This model describes well the experimental results for the relative higher depths, and deviates for the small depths due to the effect of the viscoelastic behaviour which then requires a more appropriate model to describe this phenomenon.



中文翻译:

通过仪器压痕的Charonia Lampas Lampas壳进行显微组织分析和力学性能。

扫描电子显微镜,X射线衍射和傅立叶变换红外光谱已用于表征微结构和仪器压痕,用于测定Charonia Lampas Lampas壳的力学性能。发现弹性模量和硬度均取决于三个不同层的织构。从载荷-深度曲线的分析来看,壳在低压痕载荷下表现出小的粘弹性行为,而在高载荷下表现出主要的弹塑性行为。这些现象归因于壳中存在的有机物的影响。发现弹性模量和硬度在每一层中都取决于其微观结构的负荷,因此,也取决于主要矿物部分的各向异性。在宏观上,通过使用混合规则并结合文石的各向异性来解释这种趋势。随后将Bull and Page模型应用于硬度变化,以计算宏观硬度,该宏观硬度是材料的特征硬度数和与压痕尺寸效应相关的硬度参数。该模型很好地描述了相对较高深度的实验结果,并且由于粘弹性行为的影响而偏离了较小深度,因此需要一个更合适的模型来描述这种现象。随后将Bull and Page模型应用于硬度变化,以计算宏观硬度,该宏观硬度是材料的特征硬度数和与压痕尺寸效应相关的硬度参数。该模型很好地描述了相对较高深度的实验结果,并且由于粘弹性行为的影响而偏离了较小深度,因此需要一个更合适的模型来描述这种现象。随后将Bull and Page模型应用于硬度变化,以计算宏观硬度,该宏观硬度是材料的特征硬度数和与压痕尺寸效应相关的硬度参数。该模型很好地描述了相对较高深度的实验结果,并且由于粘弹性行为的影响而偏离了较小深度,因此需要一个更合适的模型来描述这种现象。

更新日期:2018-09-18
down
wechat
bug