当前位置: X-MOL 学术Green Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New eco-cellular concretes: sustainable and energy-efficient materials
Green Chemistry ( IF 9.8 ) Pub Date : 2018-09-18 , DOI: 10.1039/c8gc02066c
Alba Font 1, 2, 3, 4, 5 , María Victoria Borrachero 1, 2, 3, 4, 5 , Lourdes Soriano 1, 2, 3, 4, 5 , José Monzó 1, 2, 3, 4, 5 , Ana Mellado 1, 2, 3, 4, 5 , Jordi Payá 1, 2, 3, 4, 5
Affiliation  

Chemistry is an essential science for understanding and developing construction materials. Specifically, the application of the green chemistry concept to the cement sector may allow the fabrication of new environmentally friendly materials with good sustainability and energy efficiency. Cellular concretes are an excellent alternative to conventional concrete in terms of thermal insulation and material economy. In this paper, the development of waste-based cellular concrete is presented; due to its good performance and low environmental impact, this focus is warranted. Three different cellular concrete systems were investigated: (i) traditional cellular concrete based on ordinary Portland cement and commercial aluminium powder; (ii) geopolymer cellular concrete applying alkali-activated chemical technology with a comparison of the use of two precursors, fluid catalytic cracking catalyst residue (FCC) and blast furnace slag (BFS), and recycled aluminium foil as an aerating agent; (iii) eco-cellular concrete, where commercial waterglass was replaced by an agro-industrial by-product, rice husk ash (RHA), in the activating solution. The development of geopolymer cellular concretes with different precursors and activating solutions has proven that the production of this type of concrete using different types of precursors is possible, depending on the availability of by-products and wastes. The densities, compressive strengths, and thermal properties of the three cellular concrete systems are assessed and a complete study on the carbon footprints of the developed concretes is presented. The results show that the alternative concretes have densities from 474 to 813 kg m−3, with compressive strengths from 2.6 to 4.6 MPa and thermal conductivities from 0.083 to 0.281 W m−1 K−1. In the case of the cellular concrete prepared using RHA in the activating reagent, the heat released from the dissolution of NaOH pellets in water dissolved the soluble silica present in the ash. This production method resulted in a reduction of its carbon footprint by 78%.

中文翻译:

新型生态蜂窝混凝土:可持续且节能的材料

化学是理解和开发建筑材料的必不可少的科学。具体而言,将绿色化学概念应用于水泥行业可允许制造具有良好可持续性和能源效率的新型环保材料。就绝热和材料经济性而言,多孔混凝土是传统混凝土的极佳替代品。本文介绍了废物基蜂窝混凝土的发展。由于其良好的性能和对环境的低影响,因此值得重点关注。研究了三种不同的蜂窝混凝土系统:(i)基于普通波特兰水泥和商业铝粉的传统蜂窝混凝土;(ii)应用碱活化化学技术的地聚合物多孔混凝土,并比较两种前体的使用:流化催化裂化催化剂残留物(FCC)和高炉矿渣(BFS),以及将再生铝箔用作充气剂;(iii)生态多孔混凝土,其中在活化溶液中用农用工业副产品稻壳灰(RHA)代替了商用水玻璃。具有不同前体和活化溶液的地聚合物多孔混凝土的开发已证明,取决于副产物和废物的可用性,可以使用不同类型的前体来生产这种类型的混凝土。密度,抗压强度,评估了三种多孔混凝土系统的热性能,并对已开发混凝土的碳足迹进行了全面研究。结果表明,替代混凝土的密度为474至813 kg m-3的抗压强度为2.6到4.6 MPa,导热系数为0.083到0.281 W m -1 K -1。对于在活化剂中使用RHA制备的多孔混凝土,从NaOH颗粒在水中溶解所释放的热量会溶解灰分中的可溶性二氧化硅。这种生产方法使碳足迹减少了78%。
更新日期:2018-10-15
down
wechat
bug