当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2018-09-17 , DOI: 10.1038/s41565-018-0255-3
Lucas Caretta , Maxwell Mann , Felix Büttner , Kohei Ueda , Bastian Pfau , Christian M. Günther , Piet Hessing , Alexandra Churikova , Christopher Klose , Michael Schneider , Dieter Engel , Colin Marcus , David Bono , Kai Bagschik , Stefan Eisebitt , Geoffrey S. D. Beach

Spintronics is a research field that aims to understand and control spins on the nanoscale and should enable next-generation data storage and manipulation. One technological and scientific key challenge is to stabilize small spin textures and to move them efficiently with high velocities. For a long time, research focused on ferromagnetic materials, but ferromagnets show fundamental limits for speed and size. Here, we circumvent these limits using compensated ferrimagnets. Using ferrimagnetic Pt/Gd44Co56/TaOx films with a sizeable Dzyaloshinskii–Moriya interaction, we realize a current-driven domain wall motion with a speed of 1.3 km s–1 near the angular momentum compensation temperature (TA) and room-temperature-stable skyrmions with minimum diameters close to 10 nm near the magnetic compensation temperature (TM). Both the size and dynamics of the ferrimagnet are in excellent agreement with a simplified effective ferromagnet theory. Our work shows that high-speed, high-density spintronics devices based on current-driven spin textures can be realized using materials in which TA and TM are close together.



中文翻译:

补偿铁氧体中的快速电流驱动的畴壁和小天体

自旋电子学是一个研究领域,旨在了解和控制纳米尺度的自旋,并应实现下一代数据存储和操纵。一个技术和科学上的关键挑战是稳定小的自旋纹理并以高速有效地移动它们。长期以来,研究集中在铁磁材料上,但是铁磁体显示出速度和尺寸的根本限制。在这里,我们使用补偿的ferrimagnets规避了这些限制。使用具有大量Dzyaloshinskii-Moriya相互作用的铁磁Pt / Gd 44 Co 56 / TaO x膜,我们实现了角驱动角温度附近的电流驱动畴壁运动,速度为1.3 km s –1T A)以及室温下稳定的天空铁蛋白,其最小直径接近磁补偿温度(T M)接近10 nm 。铁磁体的尺寸和动力学都与简化的有效铁磁体理论非常吻合。我们的工作表明,可以使用其中T AT M靠在一起的材料来实现基于电流驱动的自旋纹理的高速,高密度自旋电子器件。

更新日期:2018-12-10
down
wechat
bug