当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sensation, movement and learning in the absence of barrel cortex
Nature ( IF 64.8 ) Pub Date : 2018-09-01 , DOI: 10.1038/s41586-018-0527-y
Y Kate Hong 1 , Clay O Lacefield 1 , Chris C Rodgers 1 , Randy M Bruno 1
Affiliation  

For many of our senses, the role of the cerebral cortex in detecting stimuli is controversial1–17. Here we examine the effects of both acute and chronic inactivation of the primary somatosensory cortex in mice trained to move their large facial whiskers to detect an object by touch and respond with a lever to obtain a water reward. Using transgenic mice, we expressed inhibitory opsins in excitatory cortical neurons. Transient optogenetic inactivation of the primary somatosensory cortex, as well as permanent lesions, initially produced both movement and sensory deficits that impaired detection behaviour, demonstrating the link between sensory and motor systems during active sensing. Unexpectedly, lesioned mice had recovered full behavioural capabilities by the subsequent session. This rapid recovery was experience-dependent, and early re-exposure to the task after lesioning facilitated recovery. Furthermore, ablation of the primary somatosensory cortex before learning did not affect task acquisition. This combined optogenetic and lesion approach suggests that manipulations of the sensory cortex may be only temporarily disruptive to other brain structures that are themselves capable of coordinating multiple, arbitrary movements with sensation. Thus, the somatosensory cortex may be dispensable for active detection of objects in the environment.Mice can learn to detect objects with their whiskers and respond appropriately even in the absence of their primary somatosensory cortex.

中文翻译:

没有桶状皮层时的感觉、运动和学习

对于我们的许多感官,大脑皮层在检测刺激方面的作用是有争议的 1-17。在这里,我们研究了初级躯体感觉皮层急性和慢性失活对经过训练的小鼠的影响,这些小鼠被训练移动它们的大面部胡须以通过触摸检测物体并用杠杆响应以获得水奖励。使用转基因小鼠,我们在兴奋性皮层神经元中表达抑制性视蛋白。初级躯体感觉皮层的瞬时光遗传学失活以及永久性损伤最初会产生运动和感觉缺陷,从而损害检测行为,证明了主动感知过程中感觉和运动系统之间的联系。出乎意料的是,在随后的会话中,受损的小鼠已经恢复了全部的行为能力。这种快速恢复取决于经验,损伤后尽早重新接触任务有助于恢复。此外,学习前初级躯体感觉皮层的消融不影响任务获取。这种结合光遗传学和损伤的方法表明,对感觉皮层的操作可能只是暂时破坏其他大脑结构,这些结构本身能够协调多个、任意的感觉运动。因此,体感皮层对于主动检测环境中的物体可能是可有可无的。小鼠可以学会用胡须检测物体,即使在没有初级体感皮层的情况下也能做出适当的反应。这种结合光遗传学和损伤的方法表明,对感觉皮层的操作可能只是暂时破坏其他大脑结构,这些结构本身能够协调多个、任意的感觉运动。因此,体感皮层对于主动检测环境中的物体可能是可有可无的。小鼠可以学会用胡须检测物体,即使在没有初级体感皮层的情况下也能做出适当的反应。这种结合光遗传学和损伤的方法表明,对感觉皮层的操作可能只是暂时破坏其他大脑结构,这些结构本身能够协调多个、任意的感觉运动。因此,体感皮层对于主动检测环境中的物体可能是可有可无的。小鼠可以学会用胡须检测物体,即使在没有初级体感皮层的情况下也能做出适当的反应。
更新日期:2018-09-01
down
wechat
bug