当前位置: X-MOL 学术Biomaterials › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Printed Biofunctionalized Scaffolds for Microfracture Repair of Cartilage Defects
Biomaterials ( IF 14.0 ) Pub Date : 2018-09-14 , DOI: 10.1016/j.biomaterials.2018.09.022
Ting Guo , Maeesha Noshin , Hannah B. Baker , Evin Taskoy , Sean J. Meredith , Qinggong Tang , Julia P. Ringel , Max J. Lerman , Yu Chen , Jonathan D. Packer , John P. Fisher

While articular cartilage defects affect millions of people worldwide from adolescents to adults, the repair articular cartilage defects still remains challenging due to the limited endogenous regeneration of the tissue and poor integration with implantations. In this study, we developed a 3D-printed scaffold functionalized with aggrecan that supports the cellular fraction of bone marrow released from microfracture, a widely used clinical procedure, and demonstrated tremendous improvement of regenerated cartilage tissue quality and joint function in a lapine model. Optical coherence tomography (OCT) revealed doubled thickness of the regenerated cartilage tissue in the group treated with our aggrecan functionalized scaffold compared to standard microfracture treatment. H&E staining showed 366 ± 95 chondrocytes present in the unit area of cartilage layer with the support of bioactive scaffold, while conventional microfracture group showed only 112 ± 26 chondrocytes. The expression of type II collagen appeared almost 10 times higher with our approach compared to normal microfracture, indicating the potential to overcome the fibro-cartilage formation associated with current microfracture approach. The therapeutic effect was also evaluated at joint function level. The mobility was evaluated using a modified Basso, Beattie and Bresnahan (BBB) scale. While the defect control group showed no movement improvement over the course of study, all experimental groups showed a trend of increasing scores over time. The present work developed an effective method to regenerate critical articular defects by combining a 3D-printed therapeutic scaffold with the microfracture surgical procedure. This biofunctionalized acellular scaffold has great potential to be applied as a supplement for traditional microfracture to improve the quality of cartilage regeneration in a cost and labor effective way.



中文翻译:

用于软骨缺损微骨折修复的3D打印生物功能化支架

尽管关节软骨缺损影响了从青春期到成年人的全球数百万人,但由于组织的内生再生有限以及与植入的融合性较差,修复关节软骨缺损仍然具有挑战性。在这项研究中,我们开发了一种用聚集蛋白聚糖功能化的3D打印支架,该支架可支持从微骨折释放的骨髓细胞部分(一种广泛使用的临床程序),并证明了在拉丁美洲模型中再生软骨组织质量和关节功能的巨大改善。光学相干断层扫描(OCT)显示与标准微骨折治疗相比,用我们的聚集蛋白聚糖功能化支架治疗的组中再生软骨组织的厚度增加了一倍。H&E染色显示在具有生物活性支架的支持下,软骨层单位面积内存在366±95个软骨细胞,而常规微骨折组仅显示112±26个软骨细胞。与正常的微骨折相比,用我们的方法发现II型胶原蛋白的表达几乎高出10倍,这表明有可能克服与当前微骨折方法相关的纤维软骨形成。还评估了关节功能水平的治疗效果。使用改良的Basso,Beattie和Bresnahan(BBB)量表评估迁移率。尽管缺陷对照组在整个学习过程中均未显示出运动改善,但所有实验组均显示出随着时间的推移得分增加的趋势。本工作开发了一种有效的方法,可以通过将3D打印的治疗支架与微骨折手术程序相结合来再生关键的关节缺损。这种生物功能化的脱细胞支架具有巨大的潜力,可以用作传统微骨折的补充剂,以成本和劳力有效的方式提高软骨再生的质量。

更新日期:2018-09-15
down
wechat
bug