当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the combustion characteristics and ignition limits of the methane homogeneous charge compression ignition with hydrogen addition in micro-power devices
Fuel ( IF 7.4 ) Pub Date : 2019-01-01 , DOI: 10.1016/j.fuel.2018.09.010
Qian Wang , Yan Zhao , Fan Wu , Jin Bai

Abstract Based on the single process of free piston in micro HCCI free piston power device, the parameters such as the combustion characteristics of methane hydrogenation homogeneous charge compression ignition, the free piston movement process, the ignition time of the mixture gas, the changes of temperature and pressure in micro-combustion chamber, and the power capability of the device are compared and analyzed by combining the experiment method with the numerical simulation method. The experimental results are basically consistent with the numerical results. The research shows: when the initial equivalence ratio is 0.5, the blending of hydrogen can widen the ignition limit of mixed fuel, advance the ignition time of the mixture gas and reduce the starting energy needed for the device. At the same time, adding hydrogen to methane will reduce the maximum temperature and the maximum pressure of the micro-combustion chamber, make the burning flame more stable and alleviate the detonation phenomenon of the combustion of mixture gas. However, the addition of hydrogen to methane will result in the decrease of the final speed of the free piston, the increase of the time required for a single stroke, the decrease of the power capacity of the device, and the indicator thermal efficiency is also reduced. Only the proper hydrogen blending ratio can be used to expand the combustion boundary and improve the reliability of the combustion process while ensuring the capability of the micro power device.

中文翻译:

微功率装置加氢甲烷均质压燃燃烧特性及着火极限研究

摘要 基于微型HCCI自由活塞动力装置中自由活塞单过程,研究甲烷加氢均质压燃燃烧特性、自由活塞运动过程、混合气点火时间、温度变化等参数。通过实验方法和数值模拟方法相结合,对微燃烧室内的压力和压力,以及装置的功率能力进行了对比分析。实验结果与数值结果基本一致。研究表明:当初始当量比为0.5时,掺氢可以扩大混合燃料的点火极限,提前混合气体的点火时间,降低装置所需的启动能量。同时,在甲烷中加入氢气会降低微燃烧室的最高温度和最高压力,使燃烧的火焰更加稳定,减轻混合气燃烧的爆震现象。但在甲烷中加入氢气会导致自由活塞最终速度下降,单次冲程所需时间增加,装置功率容量下降,指标热效率也随之下降。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?减少。只有采用合适的氢掺混比,才能在保证微功率器件能力的同时,扩大燃烧边界,提高燃烧过程的可靠性。使燃烧火焰更加稳定,减轻混合气燃烧的爆震现象。但在甲烷中加入氢气会导致自由活塞最终速度下降,单次冲程所需时间增加,装置功率容量下降,指标热效率也随之下降。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?减少。只有采用合适的氢掺混比,才能在保证微功率器件能力的同时,扩大燃烧边界,提高燃烧过程的可靠性。使燃烧火焰更加稳定,减轻混合气燃烧的爆震现象。但在甲烷中加入氢气会导致自由活塞最终速度下降,单次冲程所需时间增加,装置功率容量下降,指标热效率也随之下降。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?减少。只有采用合适的氢掺混比,才能在保证微功率器件能力的同时,扩大燃烧边界,提高燃烧过程的可靠性。指示器热效率也降低。只有采用合适的氢掺混比,才能在保证微功率器件能力的同时,扩大燃烧边界,提高燃烧过程的可靠性。指示器热效率也降低。只有采用合适的氢掺混比,才能在保证微功率器件能力的同时,扩大燃烧边界,提高燃烧过程的可靠性。
更新日期:2019-01-01
down
wechat
bug