当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns
Science ( IF 56.9 ) Pub Date : 2018-09-13 , DOI: 10.1126/science.aat0350
Matěj Karásek 1 , Florian T. Muijres 2 , Christophe De Wagter 1 , Bart D. W. Remes 1 , Guido C. H. E. de Croon 1
Affiliation  

Flying fast and free Insect flight can be fast and agile, making it hard to study its detailed aerodynamics. Karásek et al. designed an untethered, flapping-wing robot with impressive agility that can mimic fruitfly maneuvers (see the Perspective by Ruffier). They studied the robot's motion during rapid banked turns, which revealed that passive motion through the turn generated yaw torque coupling. This correcting yaw rotation propelled the robot toward the escape heading needed for effective turning. Science, this issue p. 1089; see also p. 1073 An untethered, flapping-wing robot with impressive agility is capable of mimicking maneuvers of the fruitfly. Insects are among the most agile natural flyers. Hypotheses on their flight control cannot always be validated by experiments with animals or tethered robots. To this end, we developed a programmable and agile autonomous free-flying robot controlled through bio-inspired motion changes of its flapping wings. Despite being 55 times the size of a fruit fly, the robot can accurately mimic the rapid escape maneuvers of flies, including a correcting yaw rotation toward the escape heading. Because the robot’s yaw control was turned off, we showed that these yaw rotations result from passive, translation-induced aerodynamic coupling between the yaw torque and the roll and pitch torques produced throughout the maneuver. The robot enables new methods for studying animal flight, and its flight characteristics allow for real-world flight missions.

中文翻译:

无尾空中机器人挡板显示苍蝇在快速倾斜转弯中使用扭矩耦合

飞得又快又自由 昆虫飞行可以又快又敏捷,因此很难研究其详细的空气动力学特性。卡拉塞克等人。设计了一种不受束缚的扑翼机器人,具有令人印象深刻的敏捷性,可以模仿果蝇的动作(参见 Ruffier 的观点)。他们研究了机器人在快速倾斜转弯期间的运动,这表明通过转弯的被动运动会产生偏航扭矩耦合。这种纠正偏航旋转将机器人推向有效转弯所需的逃生航向。科学,这个问题 p。1089; 另见第。1073 一个不受束缚的扑翼机器人具有令人印象深刻的敏捷性,能够模仿果蝇的动作。昆虫是最敏捷的自然飞行者之一。关于他们飞行控制的假设并不总是能通过动物或系留机器人的实验来验证。为此,我们开发了一种可编程且敏捷的自主自由飞行机器人,通过其扑翼的仿生运动变化进行控制。尽管大小是果蝇的 55 倍,但机器人可以准确地模仿苍蝇的快速逃逸动作,包括朝逃逸航向纠正偏航旋转。因为机器人的偏航控制被关闭,我们证明了这些偏航旋转是由偏航扭矩与整个机动过程中产生的滚转和俯仰扭矩之间的被动、平移引起的空气动力学耦合引起的。该机器人为研究动物飞行提供了新的方法,其飞行特性允许执行现实世界的飞行任务。机器人可以准确地模仿苍蝇的快速逃生动作,包括朝逃生航向纠正偏航旋转。因为机器人的偏航控制被关闭,我们证明了这些偏航旋转是由偏航扭矩与整个机动过程中产生的滚转和俯仰扭矩之间的被动、平移引起的空气动力学耦合引起的。该机器人为研究动物飞行提供了新的方法,其飞行特性允许执行现实世界的飞行任务。机器人可以准确地模仿苍蝇的快速逃生动作,包括朝逃生航向纠正偏航旋转。因为机器人的偏航控制被关闭,我们证明了这些偏航旋转是由偏航扭矩与整个机动过程中产生的滚转和俯仰扭矩之间的被动、平移引起的空气动力学耦合引起的。该机器人为研究动物飞行提供了新的方法,其飞行特性允许执行现实世界的飞行任务。
更新日期:2018-09-13
down
wechat
bug