当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet
Nature ( IF 64.8 ) Pub Date : 2018-09-12 , DOI: 10.1038/s41586-018-0502-7
Jia-Xin Yin , Songtian S. Zhang , Hang Li , Kun Jiang , Guoqing Chang , Bingjing Zhang , Biao Lian , Cheng Xiang , Ilya Belopolski , Hao Zheng , Tyler A. Cochran , Su-Yang Xu , Guang Bian , Kai Liu , Tay-Rong Chang , Hsin Lin , Zhong-Yi Lu , Ziqiang Wang , Shuang Jia , Wenhong Wang , M. Zahid Hasan

Owing to the unusual geometry of kagome lattices—lattices made of corner-sharing triangles—their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states1–9. In the presence of strong spin–orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin–orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin–orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity—a clear indication of electron correlation—and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin–orbit properties and exploring emergent phenomena in topological or quantum materials10–12.The topological magnet Fe3Sn2 exhibits a giant nematic energy shift of a many-body electronic state, demonstrating anisotropic spin–orbit tunability.

中文翻译:

强相关 Kagome 磁体中的巨大和各向异性多体自旋轨道可调性

由于 Kagome 晶格的不寻常几何形状(由共享角的三角形组成的晶格),它们的电子可用于研究受挫、相关和拓扑量子电子态 1-9 的物理学。在强自旋轨道耦合的存在下,kagome晶格的磁性和电子结构进一步纠缠,这可能导致迄今为止未知的自旋轨道现象。在这里,我们结合使用矢量磁场能力和扫描隧道显微镜来阐明 Kagome 铁磁体 Fe3Sn2 的自旋轨道性质,并探索相关的奇异相关现象。我们发现来自 kagome 晶格的多体电子态与具有三维各向异性的矢量场强烈耦合,表现出磁化驱动的巨大向列(二次对称)能量转移。探测费米子准粒子干涉揭示了一致的自发向列性——电子相关性的明确指示——并且矢量磁化能够改变这种状态,从而控制多体电子对称性。这些自旋驱动的巨大电子响应远远超出了塞曼物理学,并指向潜在相关磁拓扑相的实现。这种 Kagome 磁体的可调性揭示了外部施加的场、电子激发和向列性之间的强烈相互作用,提供了控制自旋轨道特性和探索拓扑或量子材料中出现的现象的新方法 10-12。拓扑磁体 Fe3Sn2 表现出巨大的向列相多体电子态的能量转移,展示了各向异性的自旋轨道可调性。
更新日期:2018-09-12
down
wechat
bug